ONONDAGA LAKE NYD986913580 OU: 00 8.0 GENERAL ENFORCEMENT 8.1.2 PRP Specific Info and Correspondence General Super Plating Co., Inc. No. 1 - 0000026073 ### HANCOCK & ESTABROOK, LLP W. CARROLL COYNE DONALD P. MC CARTHY PAUL M. HANRAHAN EDWAAD J. PFOHL JOHN R. VARNEY WILLIAM L. ALLEN, JR. CHARLES H. UMBRECHT, JR. DONALD J. KEMPLE CARL W. PETERSON, JR. CLARK A. PITCHER JAMES R. MC VETY WOBERT A. SMALL WALTER L. MEAGHER, JR. DONALD A. DENTON J. THOMAS BASSETT RICHARD W. COOK DAVID S. HOWE GREGORY R. THORNTON DOREEN A. SIMMONS DAVID E. PEBELES JAMES J. CANFIELD GERALD F. STACK JAMES E. HUGHES JEFFREY B. ANDRUS JANET D. CALLAHAN THOMAS C. BUCKEL, JR. MICHAEL L. CORP DANIEL B. BERMAN JOHN T. MC CANN STEVEN R. SHAW DAVID T. GARVEY JOHN L. MURAD, JR. STEPHEN A. DONATO KENNETH P. HOLDEN MARK J. SCHULTE ALAN J. PIERCE NANCY FRIEL HORNIK R. JOHN CLARK RENEE L. JAMES DAVID G. LINGER PATRICIA A. MC GEVNA MICHAEL A. OROPALLO CAMILLE W. HILL PATRICK M. CONNORS TIMOTHY P. MURPHY COUNSELORS AT LAW 1500 MONY TOWER I . P.O. BOX 4976 SYRACUSE, NEW YORK 13221-4976 TELEPHONE (315) 471-3151 125 WOLF ROAD ALBANY, NEW YORK 12205 TELECOPIER (315) 471-3167 NEIL M. GINGOLD MARION HANCOCK FISH CINDY A. GRANGER ELIZABETH A. SALVAGNO CORA A. ALSANTE DOUGLAS H. ZAMELIS DEBRA CHINI SULLIVAN EDWARD J. SMITH. III SARAH GRACE CAMPBELL MICHAEL J. SCIOTTI ERIC C. NORDBY CHARLES J. SULLIVAN JOHN F. CORCORAN MATTHEW A. DOHENY DAYTON J. CARPENTER STEWART F. HANCOCK, JR. RAYMOND A. HUST JOHN M. HASTINGS, JR. KEVIN E. MC CORMACK COUNSEL October 11, 1996 ### VIA FEDERAL EXPRESS William Little, Esq. NYS DEC/Onondaga Lake Enf. Proj. 50 Wolf Road Albany, NY 12233 Re: Joint Request for Information/Onondaga Lake Our Client: General Super Plating Co., Inc. (GSP) Dear Mr. Little: Consistent with my numerous telephone conversations with you and correspondence I am forwarding here the Response of General Super Plating Co., Inc. (GSP) to the joint US EPA/NYS DEC Request for Information regarding Onondaga Lake. You will note that we have indicated additional information and/or documentation is available upon your request. I will await further communications from you in this regard. Thank you for your courtesies in granting various extensions for our Response. Very truly yours, HANCOCK & ESTABROOK, LLP orien a. Simmons/sm Doreen A. Simmons ### DAS/slm cc: M Mr. William Daigle, P.E./NYS DEC - Chief, Special Projects Section Mr. Herbert H. King/US EPA - Remedial Projects Manager Albert DiBernardo, P.E./TAMS Consultants, Inc. George A. Shanahan, Esq./US EPA (w/o enclosures) Mr. William Southwell, General Super Plating Co., Inc. (w/enclosures) # RESPONSE OF GENERAL SUPERPLATING CO., INC. ("GSP") to JOINT SECTION 104(e) REQUEST OF US/EPA AND NYS/DEC RE: ONONDAGA LAKE GSP, upon information and belief, submits the following responses to the Joint Request for Information, as regarding Onondaga Lake: ### **REQUEST NO. 1** - 1. a. State the correct legal name and address of your company. - b. Identify the state of incorporation of your company and your company's agent for service of process in the state of incorporation and in New York. ### RESPONSE NO. 1 - a. General Superplating Co., Inc. 5762 Celi Drive East Syracuse, New York 13057 (A new address number was assigned by the United States Postal Service in January of 1995 to this facility. Prior to that time, the address for the facility was "22 Celi Drive"). - Incorporation New York Agent for Service Company/Secretary of State ### **REQUEST NO. 2** 2. State the name(s) and address(es) of the President, the Chairman of the Board and the Chief Executive Officer of your company. ### RESPONSE NO. 2 President - Thomas Gerhardt c/o GSP 5762 Celi Drive East Syracuse, NY 13057 Chair-CEO - Herbert N. Gerhardt, Jr., c/o GSP 5762 Celi Drive East Syracuse, NY 13057 ### **REQUEST NO. 3** 3. If your company is a subsidiary or affiliate of another corporation, or has subsidiaries, identify each such entity and its relationship to the company, and state the name(s) and address(es) of each such entity's President, Chairman of the Board and Chief Executive Officer. ### **RESPONSE NO. 3** 3. Not Applicable. ### **REQUEST NO. 4** 4. List all of your facilities which generated, handled, transported, treated, stored or disposed of hazardous substances, hazardous wastes, or industrial wastes which are, or were formerly, located within fifty miles of any point along the shoreline of Onondaga Lake. For each such facility, state its name and address, and period of operation, Please identify any of your facilities that are no longer in operation within this area. Please note the SIC code and EPA RCRA ID number of all facilities, if such have been assigned. Please include a facility location map and a map of the facility itself. ### **RESPONSE NO. 4** 4. A. Celi Drive facility 5762 Celi Drive East Syracuse, NY 13057 (Previously known at "22 Celi Drive" at same location) In operation from approximately 1980 to present SIC Code - 3471 EPA I.D. No. NYD982721656 Location Map - See Exhibit 4A Facility Map - See Exhibit 4A-1 B. **Joy Road facility** 6606 Joy Road East Syracuse, NY 13057 In operation periodically from approximately 1987 to 1992 SIC Code - 3471 EPA I.D. No. NYD981182538 Location/Facility map - Exhibit 4B ### C. Joy Road (Adhesive) facility 6608 Joy Road East Syracuse, New York 13057 In operation from approximately 1986 to 1990 SIC Code - 3471 EPA I.D. No. NYD981568264 Facility Map - None currently available (adjacent to Joy Road Facility). **Note:** For a brief period in 1986, GSP operated a small adhesive pilot plant on Oliva Drive in East Syracuse as a prototype for the Joy Road Adhesive facility. No waste was generated by the pilot plant. ### D. Bridge Street facility 5781 Bridge Street East Syracuse, New York 13057 In operation from approximately 1963 to 1983 (facility was phased out from 1980-1983) SIC Code - 3471 EPA I.D. No. NYD002242501 Facility location map - Exhibit 4A Note: In 1979 a major fire at this facility destroyed all records. ### **REQUEST NO. 5** 5. Indicate the nature of the operation for each facility identified in Question 4 above. If the operations changed, indicate the nature of those changes (including any name changes) and the dates the changes took place. ### RESPONSE NO. 5 5. The general nature of operations at each facility As to Celi Drive facility, Joy Road facility and Bridge Street facility - metal finishing on plastic and metal substrates. As to Joy Road (Adhesive) facility - application of adhesives on metal components. ### **REQUEST NO. 6** 6. For each facility identified in your response to Question 4 above, provide a detailed process/mechanical description of the processes used, the wastes generated from such processes, and the volume or weight of such wastes. If the process and/or waste stream changed, indicate the nature of the changes (including volumes) and the dates the changes took place. For each such waste stream provide any analyses that you have of the chemical composition of the waste stream. ### RESPONSE NO. 6 6. A. As for descriptions of processes which generate or generated waste at the Celi Drive facility | Process | Approximate Period of Operation | Process Description | <u>Waste</u>
<u>Generated</u> | |---------------|---------------------------------|--|----------------------------------| | Plastics Line | 1980 to present | The plastics plating line consists of surface preparation, activation, electroless plating and electroplating steps. Surface preparation and activation involves etching of the plastic surface, providing sites for adhesion of the subsequent coating and catalytic deposition of a layer of metal enabling electrolytic deposition (electroless plating) of a metallic coating. | F001, F006,
F007 | | Process | Approximate Period <u>of</u> <u>Operation</u> | Process Description | <u>Waste</u>
<u>Generated</u> | |---------------------------|---|---|------------------------------------| | Metals #1 (Job Shop) Line | 1983 to present | Phosphate Process: This process deposits an immersion coating of zinc phosphate onto steel substrates. Anodizing Process: The anodizing process coverts the surface of aluminum substrate into a dyeable corrosion and abrasion resistant aluminum oxide coating for both functional and decorative purposes. Miscellaneous Metals Processes: These processes are associated with electrodepositon on metal substrates. | F006 | | Metals #2 Line | 1988 to present | This is a fully automated, dedicated plating line where materials are used to prepare a stainless steel stamping for a subsequent metal plate. | F001, F003,
F005, F006,
F007 | | Shielding Line | 1983 to 1993
(intermittent) | The shielding line consists of surface preparation, activation and electroless plating. Surface preparation and activation involves etching of the plastic surface, providing sites for adhesion of the subsequent coating and catalytic deposition of a layer of metal enabling electrolytic deposition (electroless plating). | F006 | | Barrel Zn Plating
Line | 1983 to 1988 | The zinc barrel line consists of cleaners, activators and plating solutions designed to
bulk zinc plate metal parts. | F006 | | Process | Approximate
Period <u>of</u>
<u>Operation</u> | Process Description | <u>Waste</u>
<u>Generated</u> | |----------------|---|---|---| | Ni Barrel Line | 1992 to present | The barrel nickel process consists of cleaners, activators and plating solutions designed to bulk nickel plate metal parts. | F006 Note: This is a closed loop line (no discharge). | As to nature and quantity of waste generated (approximate) at the Celi Drive facility | Waste | Approx. Annual Vol./Tons
(1983 to 1996) | Transporter/Disposal
Facility | |---|--|--| | Plating Sludge
(F006; currently reclaimed) | 81 | Not applicable (none within 50 miles of Onondaga Lake) | | Spent Gold Resin
(F007; reclaimed) | .5 | Not applicable | | Spent degreaser (F001, F002) | 10 | Solvents & Petroleum Services, Inc. Syracuse, New York | | Spent Gold Bath
(D003) | <.05 | Not applicable. | ### Industrial recycled materials | <u>Waste</u> | Approx. Annual Vol./Gallons | Transporter/Disposal Facility | |-----------------------------------|-----------------------------|-------------------------------| | Spent Strip (from Ni Barrel Line) | 660 Gallons | None · | See Exhibit 6A - Representative manifests/Celi Drive facility. ### B. As for descriptions of processes which generated waste at the Joy Road facility | <u>Process</u> | Approximate Period of Operation | Process Descriptions | Waste Generated | |-----------------|---------------------------------|---|---------------------------| | Shielding Line | 1987 - 1989
1990 - 1992 | See above, same as
Celi Drive Facility | F006 D001
D002
D007 | | Ni Plating Line | 1989-1990 | This process consists of cleaners, activators and plating solutions used to deposit a layer of nickel on metallic substrates. | F006 | As to nature and quantity of waste generated (approximate) at the Joy Road facility ### Hazardous Waste | Waste | Approx. Annual Vol./Tons
1988 to 1992 | Transporter/Disposal Facility | |----------------------------|--|-------------------------------| | Plating Sludge (F006) | 7 Tons | Not applicable | | Miscellaneous Waste (D001) | .5 Tons | Not applicable | | Spent Bath (D002) | 6 Tons | Not applicable | | Spent Bath (D007) | 18 Tons | Not applicable | See Exhibit 6B Representative Manifest/Joy Road facility. # C. As for descriptions of processes which generated waste at the Joy Road (Adhesive) facility | Process | Approximate Period of Operation | Process Descriptions | Waste Generated | |---------------|---------------------------------|---|-------------------| | Adhesive Line | 1986 - 1990 | Spray application of adhesive on metal components | D001 F002
F005 | As to nature and volume of waste generated by processes at the Joy Road (Adhesive) facility ### Hazardous Waste | <u>Waste</u> | Approx. Annual Vol./Tons
1986 to 1990 | Transporter/Disposal Facility | |--------------------------------------|--|--| | Spent Wash (F002) | 1.8 | Solvents & Petroleum
Services, Inc.
Syracuse, New York | | (D001; related to facility shutdown) | 1.2 | Not applicable. | | (F005; related to facility shutdown) | .1 | Not applicable. | D. As for descriptions of processes which generated waste at the **Bridge Street** facility | <u>Process</u> | Approximate Period of Operation | Process Descriptions | |---------------------------|---------------------------------|--| | Plastics Line | 1964 - 1980 | The Plastics plating line consists of surface preparation, activation, electroless plating and electroplating steps. Surface preparation and activation involves etching of the plastic surface, providing sites for adhesion of the subsequent coating and catalytic deposition of a layer of metal (electroless Plating) enabling electrolytic deposition of a metallic coating. | | Metals Line
(Job shop) | 1963 - 1983
(Intermittent) | Miscellaneous plating processes that are associated with electrode deposition on metal substrate. | | Zn Barrel Line | 1965-1983 | The zinc barrel line consists of cleaners, activators and plating solutions designed to bulk zinc plate a variety of metal parts. | | Zn Rack Line | 1964 - 1983 | The zinc plating line consists of cleaners, activators and plating solutions designed to rack plate zinc on a variety of metal parts. | Note: No records of any waste generation exists. (See Note in Response 4D). **Note:** As to the above facilities, only Transporter/Disposal Facilities within 50 miles of Onondaga Lake are provided. There were sporadic transportations off-site of "off spec" raw materials and maintenance related waste to out of state facilities. Manifests available upon request. See also Response 10 as to discharges to the Onondaga County Department of Drainage and Sanitation (OCDDS). ### **REQUEST NO. 7** 7. Explain in detail the manner of transportation or disposal of the hazardous wastes, hazardous substances and industrial wastes generated, handled, treated or stored at the facilities identified in your response to Question 4 above. Provide a separate response for each facility identified in your answer to Question 4 above. ### RESPONSE NO. 7 7. See Response 6. ### **REQUEST NO. 8** 8. For each type of hazardous waste, hazardous substance, and industrial waste material listed above, provide the names and addresses of all transporters and disposal facilities used, and state when each transporter and disposal facility was used. Please identify the total volume or weight of such material that was transported by that entity or individual to each such disposal facility. ### **RESPONSE NO. 8** 8. See Response 6. ### **REQUEST NO. 9** - 9. State whether any hazardous substance, hazardous waste or industrial waste, as those terms are defined in Instructions 12-14, was ever released or discharged into the environment at your facility. For purposes of this request, the term "discharged into the environment" means an intentional or accidental release to any and all environmental media, including soil, groundwater, surface water, sediments, and air. If yes, provide the following information: - a. If this was a continuous or intermittent practice or event, identify the period of time during which this practice or event occurred, the hazardous substances, hazardous wastes, and industrial wastes released or discharged, and the quantities that were released or discharged and to where they were discharged. (In addition to a description of the discharge location, the discharge location should be shown on a map of the area and enclosed with your reply). - b. If there was no continuous or intermittent practice or event of release or discharge, specify the date of each incident, the hazardous substances, hazardous wastes, and industrial wastes, and the quantities that were released or discharged. - c. If any of the hazardous substances, hazardous wastes, or industrial wastes released would have entered either directly or indirectly (<u>e.g.</u> through surface runoff or groundwater migration) into Onondaga Lake or its tributaries, please provide the path of release. d. Provide all data summarizing the results of laboratory analyses, as well as all data acquired in the field, from soil, sediment, groundwater, surface water, air and biota samples collected on or adjacent to each facility to assess the extent of contamination. Clearly indicate the sample locations on a site map. ### RESPONSE NO. 9 ### 9. Celi Drive facility As to Air Permits (current) - see Exhibit 9A. **Note:** GSP is anticipating new Air Permits to be issued within 90 days, based on applications submitted which will be made available upon request. ### Joy Road facility As to Air Permits (prior; facility no longer in operation) - see Exhibit 9B. In May of 1988 GSP responded to a suspected chromium solution discharge (determined to be the result of a defective floor line in the containment system) by reporting the incident to the New York State Department of Environmental Conservation and retaining a consultant to immediately investigate and remediate any residual contamination. The facility had only been in operation for several months prior to the suspected discharge. See report of Blasland & Bouck Engineers, P.C. (August 1993) attached here as Exhibit 9B-1. - (a) See Exhibit 9B-1 - (b) See Exhibit 9B-1 - (c) There is no reason to believe that chromium or any other hazardous substance would have entered Onondaga Lake or its tributaries. - (d) See Exhibit 9B-1 Also, two minor spill incidents occurred during the operation of the Joy Road facility - 1) during the removal of a spent bath solution the transporter discharged onto the facility parking lot approximately 50 gallons of solution which was immediately remediated by the transporter (approximately 1988) and 2) a person was changing oil and spilled less than 5 gallons of waste (auto) oil near the facility which was immediately remediated (1992). ### Joy Road (Adhesive) facility As
to Air Permits - see Exhibit 9C **Note:** See also Response 10 as to discharges to the Onondaga County Department of Drainage and Sanitation (OCDDS). Retained SARA Title III/Form R's available upon request. ### **REQUEST NO. 10** - 10. Was any of the material described in your response to Question 9 treated prior to direct discharge into the Lake or its tributaries, or pretreated prior to discharge into a municipal sewerage system which discharges to the Lake or a tributary to the Lake? If so: - a. describe the treatment or pretreatment process and capacity and whether discharges were continuous or intermittent; - b. the years during which treatment or pretreatment occurred, including date treatment or pretreatment began, and whether discharges continue or date of cessation of discharges if discontinued; - c. the quantities of influent waste treated or pretreated; - d. the quantities and composition (chemical analysis) of treated or pretreated material discharged; - e. whether the material was discharged directly into the Onondaga Lake, a tributary of the Lake or into a municipal sewerage system which discharges to the Lake or a tributary of the Lake; - f. how you disposed of any sludges or residues generated by the treatment or pretreatment process; and - g. provide the location of discharge and, if applicable, the name of municipal sewerage system to which discharge was made. ### RESPONSE NO. 10 10. Not applicable except as to discharges to the OCDDS which may have treated and then discharged to Onondaga Lake. ### A. Celi Drive facility See Exhibit 10A - Permit(s) - a. See Exhibit 10A. In general, pretreatment consists of chrome reduction and conventional hydroxide precipitation with occasional (as needed) cyanide destruction. - b. During all years of operation - c. See (d) below. - d. See Representative monitoring reports Exhibit 10A-1; since 1992 approximately 20,000,000 gallons/year of **total** waste water. Additional reports available upon request. - e. Discharge to OCDDS only See Exhibit 10A-1 - f. See Response 6 - g. See Exhibit 10A ### B. Joy Road facility See Exhibit 10B - Permit(s). - a. See Exhibit 10B. In general, pretreatment consisted of chrome reduction and conventional hydroxide precipitation. - b. During all years of operation - c. See (d) below and Exhibit 9B - d. Representative monitoring reports attached as Exhibit 10B-1; 1992/1993 approximately 2,650,000 gallons/year of **total** wastewater. - e. Discharge to OCDDS only See Exhibit 10B - f. See Response 6 - g. See Exhibit 10B ### C. Joy Road Adhesive facility. See Exhibit 10C - Permit - a. See Exhibit 10C pH monitoring only - b. Not applicable - c. Unknown - d. None now known - e. Discharge to OCDDS only See Exhibit 10C - f. See Response 6 - g. See Exhibit 10C ### D. Bridge Street facility Process effluent was discharged to OCDDS. Specific details of discharge unknown. No known pretreatment, besides cyanide destruct. No records exist. See **Note** in Response 4D. ### **REQUEST NO. 11** 11. Identify all persons and other entities, including yourself, who determined how to treat, store, and/or dispose of hazardous wastes, hazardous substances, and industrial wastes generated at the facility. Provide the names and current addresses of all individuals who participated in such determinations. ### RESPONSE NO. 11 11. Generally William W. Southwell (c/o GSP), following recommendations of consultants and persons under his supervision (prior to Mr. Southwell - Scott Greenleaf). ### REQUEST NO. 12 12. Identify all of the sources of the information contained in your answers to questions 6-11. Provide copies of all documents that relate to your answers including, but not limited to invoices, manifests, hazardous substances, hazardous and industrial waste data and analyses or characterizations and contracts, or agreements with transporting, treatment, storage or disposal facilities. ### **RESPONSE NO. 12** 12. Documents generally referenced to respond to these requests are attached as Exhibits to this Response or noted as available upon request. ### **REQUEST NO. 13** 13. Provide copies of applications for Refuse Act Permit Program, National Pollutant Discharge Elimination System Permits, State Pollutant Discharge Elimination System Permits, and Onondaga County Department of Drainage and Sanitation Permits, including any waste analyses or characterization submitted with such applications. Provide copies of all permits and all amendments to said permits. Provide copies of all Notices of Violations, or administrative or judicial complaints, concerning such discharges submitted or filed by federal, state, county or municipal governments and their regulatory agencies as well as copies of all judicial complaints filed by other persons (including corporate or partnership entities or public interest groups). ### **RESPONSE NO. 13** 13. No known formal applications. Periodic correspondences relative to permit modifications available upon request. See Response 10. As to Notices of Violation See Exhibit 13A - Administrative Orders (executed by GSP in compromise of Notices and Orders; all actual notices available upon request). See Exhibit 13A-1 - summary of NOV violations 1988 to 1994. ### **REQUEST NO. 14** 14. Identify any current or previous insurance policies that may indemnify you or your company against any liability that you or any entity may incur in connection with the release of any hazardous substances and/or hazardous wastes at the Site. Please provide a copy of the policy. For any policy that you cannot locate or obtain, provide the name of the carrier, years in effect, nature and extent of coverage, and any other relevant information you have. ### RESPONSE NO. 14 14. | Policy period | Policy No. | Insurance Carrier | |--|--|---| | 1979-1980
1980-1984
1984-1985
1985-1987 | BOP 866 42 95
BOP 878 83 32
BOP 878 84 08
BOP 887 72 09 | Home Insurance Company
2 Clinton Square
Syracuse, NY 13202 | | 1987-1988
1988-1989
1989-1990 | 052 SM 1137035
052 GL 5285110
052 GL 5526239 | Aetna Claims P.O. Box 22986 Rochester, NY 14692-2986 | | 1990-1992
1992-1994
1994-1995 | CDO 993 21 96
CDO 993 21 69
GL 301 24 74 | AIG, New
Hampshire/Granite State
100 Great Oak Office Park
2nd Floor
Albany, NY 12203 | GSP is continuing its investigation as to insurance policies. ### **REQUEST NO. 15** 15. Supply any additional information that may be used to identify additional sources of information or parties involved with the Site. ### **RESPONSE NO. 15** 15. None known. ### **REQUEST NO. 16** 16. State the name, title, and address of each individual who assisted or was consulted in the preparation of the response to this "Request for Information" and specify the question to which each person assisted in responding. ### RESPONSE NO. 16 16. William W. Southwell Vice President/General Manager Jean Jodoin Environmental Engineer Scott Greenleaf Vice President Robert Besanson . . Service Supervisor Herbert N. Gearhardt Chairman > All c/o General Super Plating Co., Inc. 5762 Celi Drive East Syracuse, NY 13057 Assisted by counsel - Doreen A. Simmons, Esq. Hancock & Estabrook, LLP 1500 MONY Tower I P.O. Box 4976 Syracuse, NY 13221-4976 ### INDEX TO EXHIBITS # Response of GSP to Joint Request dated October 10, 1996 | EXHIBIT | ITEM | |---------|--| | 4A | Facility location map (Celi Drive Facility) | | 4A-1 | Plant lay out (Celi Drive Facility) | | 4B. | Facility location map (Joy Road Facility) | | 6A | Representative hazardous waste manifests - Celi Drive Facility | | 6B | Representative hazardous waste manifest - Joy Road Facility | | 9A | Air Permit (Celi Drive Facility) | | 9B | Air Permit (Joy Road Facility) | | 9B-1 | Consultant Report - (Joy Road Facility; August 1993) | | 9C | Air Permit (Joy Road Adhesive Facility) | | 10A | Municipal sewage system (OCDDS) permit (Celi Drive Facility) | | 10A-1 | Representative monitoring reports (Celi Drive Facility) | | 10B | OCDDS permit - Joy Road Facility | | 10B-1 | Representative monitoring reports - Joy Road Facility | | 10C | OCDDS permit - Joy Road Adhesive Facility | | 13A | Administrative Orders (OCDDS) | | 13A-1 | Representative Chart/NOVs | ## GENERAL SUPER PLATING PLANT LAY OUT # In case of an unergency or spill innrediately call the National Response Center (800) 424-8802 and the PA DER (717) 787-4343 GENERATOR TRANSPORTER FACILITY PENNSY: ANIA DEPARTMENT OF ENVIRCHMENTAL RESCORCES Bureau of Waste Management P. O. Box 2063 Harrisburg, PA 17120 Please print or type. (Form designed for use on elite (12-pitch) typewriter.) | | 0039 Expires 9-30-88 | | | | | | | | |
--|--|--|---|---------------|--|--|--
--|-----------------------------| | UNIFORM HAZARDOUS WASTE MANIFEST 1. Generator's US N Y D 30 · 0 · 2 | Ci A ib ito. | Manifest
Iment No.
()- ()- ()- 1 | 1 . | age 1 | is not t | require | | aded are
deral lav | | | 3. Generator's Name and Mailing Address | | | A. St | ate Mar | | | nt Num | | | | General Super Plating Company, | Inc. | | | PAE | } \(\(\) | 18 | 478 | 350 | | | 22 Celi Drive, B. Syracuse, New | | | B. St | ate Gen | . ID | | | | | | 4. Generator's Phone (315) 446-2264 | | | | same | | | | | | | 5. Transporter 1 Company Name 6. | US EPA ID Number | | C. St | ate Tran | s. ID | <u> </u> | ~ | _ | | | BES Environmental Specialists, Inc. P | 'A' DO'O' 9 2:3:2 | 2.7.45 | P | A-AH | Ŀ | <u> O </u> | <u> </u> | ح ا | | | 7. Transporter 2 Company Name 8. | US EPA ID Number | , | D. Tra | ansporte | r's Pho | ne (| 717) | 779- | 5316 | | | · · · · · · · · | | E. Sta | ite Tran | s. ID | | | | | | Designated Facility Name and Site Address 10. | US EPA ID Number | | Р | A-AH | | • | • • | | | | WRC PROCESSING COMPANY (RECYCLING FACIL | LTY) | | F. Tra | nsporte | r's Phor | 1e (|) | | | | Walnut Lane, R.D. #5, Box 5553 | ^ ^ - ~ | | G. Sta | ate Faci | lity's ID | | | Requir | | | Pottsville, PA 17901-9507 P | - A.D. 9 · 8 · 1 · 0 · 3 · 8 | | | cility's f | hone (| 717 | 622 | <u>-4747</u> | <u>'</u> | | 11. US DOT Description (Including Proper Shipping Name, Hazard Class, | and ID Number) | 12. Conta | Type | a | 13.
Total
uantity | | 14.
Unit
Wt/Vol | Wast | e No. | | a. | | | | | | | | | | | RO, HAZARDOUS WASTE, SOLID, N.O.S., ORN | 1-E NA9189 (FOO | 16 | C F | ٠. | | 2.1 | y | F.O | .0.6 | | b. | | | | | ٠ | | | | | | | , | | · | | | | | | | | C. | | | | | | | | | | | • | | | | | | • | | | . <i>.</i> | | d. | | | | | | | | | | | | | | | | | • | | | | | | | 1 1 | | | | | | | | | J. Additional Descriptions for Materials Listed Above (include physical sta | ate and hazard code) | | K. Han | dlina Co | des for | Wast | es Liste | d Above | | | J. Additional Descriptions for Materials Listed Above (include physical state Haz. Code Physical State Haz. Code | ate and hazard code) Physical State | | | - | - | Wast | es Liste | d Above | | | | | | T23/ | r50/: | r59 . | | es Liste | d Above | | | Haz. Code Physical State Haz. Code a. T S L c. C. | | | T23/'
• T1/ | - | r59 . | c. | es Liste | d Above | | | Haz. Code Physical State Haz. Code a. T SI C | | | T23/ | r50/: | r59 . | | es Liste | d Above | · | | Haz. Code And The State By the state of | Physical State | | T23/
a T1
b. | r50/: | r59 . | c. | es Liste | d Above | | | Haz. Code Physical State Haz. Code a. T SI C | Physical State | | T23/
a T1
b. | r50/: | r59 . | c. | es Liste | d Above | | | Haz. Code And Instructions and Additional Information Haz. Code And Instructions and Additional Information | Physical State | - JA | T23/ | I50/1
8-DR | TS9 | d. | | · | and 3re | | Haz. Code A T S I B. Code C. C | Physical State | fully and accuration to span accurate the a | T23/1 a.T1 | I'50/T | ONG | d. | ir salook | rg name :
nt regulat | ions | | Haz. Code A T S I b. | Physical State Line State A 205 tents of this consignment are on for transport by highway accideduce the volume and toxicity ge or disposal currently available. | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | er salook
overame
minea to
re inreat | ig name :
nt regulat
pe econo
to numar | ions
micaliv
nealth | | Haz. Code A. T. S.L. b. C. L. b. C. L. b. C. L. c. L. d. L. 15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: 1 hereov declare that the control dissilined, packed, marked, and labeled, and are in all respects in proper condition. It is am a large quantity generator. 1 certify that I have a program in place to represented and that I have selected the practicable method of treatment storal and the environment OR. It is am a small quantity generator, I have made a graduate to me and that I can afford Printed/Typed Name | Physical State Line State A 205 tents of this consignment are on for transport by highway accideduce the volume and toxicity ge or disposal currently available. | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | er salook
overame
minea to
re inreat | ig name :
nt regulat
pe acond
to numar
t mernod | ions
micaliv
nealth | | Haz. Code A. T. S. L. b. C b. C 15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: I hereov declare that the control dissilined, backed, marked, and labeled, and are in all respects in proper condition of the amiliar and that I have a program in place to reproduced and that I have selected the practicable method of treatment storal and the environment OR. If I am a small quantity generator, I have made a graduable method on the environment of | rents of this consignment are on for transport by highway accided the volume and toxicity ge or disposal currently availal poor faith effort to minimize my | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | ir soldolik
loverome
mined to
re threat
nage mer | ig hame :
nt regulat
pe adono
10 numar
t method | micaliv
nealth
inat s | | Haz. Code A. T. S.L. b. C. L. b. C. L. b. C. L. c. L. d. L. 15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: 1 hereov declare that the control dissilined, packed, marked, and labeled, and are in all respects in proper condition. It is am a large quantity generator. 1 certify that I have a program in place to represented and that I have selected the practicable method of treatment storal and the environment OR. It is am a small quantity generator, I have made a graduate to me and that I can afford Printed/Typed Name | rents of this consignment are on for transport by highway accided the volume and toxicity ge or disposal currently availal poor faith effort to minimize my | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | ir soldolik
loverome
mined to
re threat
nage mer | ig hame :
nt regulat
pe adono
10 numar
t method | micaliv
nealth
inat s | | Haz. Code A. T. S.L. b d 15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: I hereov declare that the contribusion packet, marked, and labelled, and are in all respects in proper condition in a man all argumentation. I be retrieved that I have a program in place to repracticable and that I have selected the practicable method of treatment storal and the abuncomment OR. If I am a small quantity generator, I have made a granted and the program of | rents of this consignment are on for transport by highway accided the volume and toxicity ge or disposal currently availal poor faith effort to minimize my | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | ir soldolik
loverome
mined to
re threat
nage mer | og name in (regular) og scong to numar to maringo the Day | micaliv
nealth
inat s | | Haz. Code A. T. S.L. b. C 15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: 1 hereov declare that the control disastined, packed, marked, and 'abelied, and are in all respects in proper condition in a mail arge quantity generator. 1 certify that I have a program in place to repracticable and that I have selected the practicable method of treatment storal and the environment OR, it is am a small quantity generator, I have made a graduable to me and that I can afford Printed/Typed Name Michael D. Desso 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name | tents of this donsignment are on for transport by highway accided to a discovery general gen | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | er shipper me minen to come
in read anage mer | g name in regular of regular of the score of number of the score th | mically health final s | | Haz. Code A. T. S.L. b. C b 15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: I hereov declare that the control dissilined, packed, marked, and labeled, and are in all respects in proper condition. It is am a large quantity generator. I certify that I have a program in place to repracticable and that I have selected the practicable method of treatment storal and the environment OR. It is an a small quantity generator, I have made a graduable to me and that I can afford Printed/Typed Name Michael D. Desso 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name On the Acknowledgement of Receipt of Materials | tents of this donsignment are on for transport by highway accided to a discovery general gen | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | er shipper me minen to come in read anage mer | ig name in regulation according to number to marked out the control of contro | mically health final s | | Haz. Code A. T. S.L. b. C b 15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: I hereov declare that the control disastined, packed, marked, and labeled, and are in all respects in proper condition. It is am a large quantity generator. I certify that I have a program in place to repracticable and that I have selected the practicable method of treatment storal and the environment OR. It is an a small quantity generator, I have made a grant and the environment of | rents of this consignment are on for transport by highway acceptude the volume and toxicity ge or disposal currently availabed faith efforts minimize my | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | er solodic
loverome
mined to
re inreat
anage mer
Mon
O | ig name in regulation according to number to marked out the control of contro | Year | | Haz. Code a. T SI b. | rents of this consignment are on for transport by highway acceptude the volume and toxicity ge or disposal currently availabed faith efforts minimize my | fully and accumulation accumula | b. | r50/73=DRT | acove ov | d. | er solodic
loverome
mined to
re inreat
anage mer
Mon
O | ig name in regulation according to number to marked out the control of contro | Year | | Haz. Code a. T SI b. | Tents of this consignment are on for transport by highway accurate the volume and toxicity ge or disposal currently available of district the volume and toxicity ge or disposal currently available of district the volume and toxicity ge or disposal currently available of district the volume and toxicity get or disposal currently available of district the volume of | fully and according to Joph
of waste Jen-
ole to me white
waste genera | b. | r50/18=DR1 | apove by all and half eer nave trasset all er test we | d. | er solodic
loverome
mined to
re inreat
anage mer
Mon
O | ig name in regulation according to number to marked out the control of contro | Year | | Haz. Code A. T. S. I. B. J. | rents of this consignment are on for transport by highway accedude the volume and toxicity ge or disposal currently availabed faith efforts minimize my Signature. Signature Signature | fully and according to Joph
of waste Jen-
ole to me white
waste genera | b. | r50/18=DR1 | apove by all and half eer nave trasset all er test we | d. | er saldak
sovernme
minen to
re inreat
anage mer
Mon
O | or name: no regulation according to number of marrison the Day 2 2 0 the Day The Day | rear year Year Year Year | | Haz. Code a. T SI b. | Tents of this consignment are on for transport by highway accurate the volume and toxicity ge or disposal currently available of district the volume and toxicity ge or disposal currently available of district the volume and toxicity ge or disposal currently available of district the volume and toxicity get or disposal currently available of district the volume of | fully and according to apply to the waste penale pe | b. urately recorded in terror and to an aminimation and an architecture and the second | r50/18=DR1 | above by all and male end and male end and male end and male end and end end end end end end end end e | d. | er solodic
loverome
mined to
re inreat
anage mer
Mon
O | or name: no regulation according to number of marrison the Day 2 2 0 the Day The Day | Year | 16 88 3 Plesse grint or type. Do not Stable. ### HAZARDOUS WASTE MANIFEST P.O. Box 12820, Albany, New York 12212 Form Approved: OMB No. 2050-0039. Expires 9-30-91 | . | WASTE MANIFEST Generator's US EPA No. Waste Manifest Document | |-----|--| | | 3. Generator's Name and Mailing Address GENERAL SUPER PLATING NY B 181939 5 | | ٠. | 22 CELI DRIVE E. SYRACUSE, N.Y. 13057 4. Generator's Phone (315) 446-2264 B. Generator's ID SAME | | | 5. Transporter 1 (Company Name) 6. US EPA ID Number C. State Transporter's ID / 2.844/ | | | SOL VENTS & PETRULEUM SERVICE INC. N M D () 1 3 3 7 7 4 5 4 0. Transporter's Phone (315) 454-4467 | | | 7. Transporter 2 (Company Name) 8. US EPA ID Number E. State Transporter's ID | | | 9 Designated Facility Name and Site Address 10. US EPA ID Number G. State Facility's ID | | | SOLVENTS & PETROLEUM SERVICE INC. | | | 1405 BREWERTON RD. SYRACUSE H.Y. 13208 Y Y D Q 1 3 1 7 7 4 3 4 319 454-4467 | | | 11. US DOT Description (Including Proper Shipping Name, Hazard Class and ID Number) 12. Gontainers 13. 14. Total Unit No. Type Quantity WtVoli Waste No. | | 3 | ORM-A F-002 | | | WASTE 1. 1. 1. TRICHORDETHANE UNISE GOHAM COILLED G FOOD | | | b | | 2 | STATE - | | | C. C | | | STATE | | Ì | d EPA: : -=#! | | , | STATE | | | J. Additional Descriptions for Materials listed Above K. Handling Codes for Wastes Listed Above | | - | a | | Ì | egre and grown to a constitution of a constitution of the constitu | | 1 | grammating and services the services of se | | Ì | 15. Special Handling Instructions and Additional Information | | | | | | | | į | | | | 16. GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labeled, and are in all respects in proper condition for transport by highway according to applicable international and national government regulations and state laws and regulations. | | | If I am a large quantity generator, I certify that I have program in place to reduce the volume and toxicity of waste generated to the degree I have determined to be economically practicable and that I have selected the practicable method treatment, storage, or disposal currently available to me which minimizes the present and future threat to human health and the environment. OR if I am a small generator, I have made a good faith enfort to minimize my waste and select the pest waste management method that is available. | | 1 | to me and that I can arford. PrintedTyped Name Mo. Day Year Mo. Day Year | | - | ROBERT E KEIL COLOR GO HOURS | | : | 17. Transporter 1 (Acknowledgement of Receipt of Materials) | | | Printed/Typed Nama Car B Halawson To Signature Call The Various 10/385 | |)] | 18. Fransporter 2 (Acknowledgement of Receipt of Materials) | | | Printed/Typed Name Signature Mo. Day Year | | | 19. Discrepancy indication Space | | ! | | | Ī | 20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in item 19. | | | Printed/Typed Name Signature Mo. Day Yea | | | | AND CHEMOTHERAP TIC WASTE. Form approved. OMB No. 2050-0039 ER-WM-51 REV. 1/91 repair minicuratery carr title Ivanional Response Center (800) 424-8802 and the PA DER (717) 787-4343 Expires 9-30-92 | 1 | UNIFORM HAZARDOUS 1. Generator's US EPA ID N WASTE MANIFEST N Y D 9 8 1 1 0 2 5 3 | Doc |
Manifest
cument No.
U L | 2. Page | is not re- | quired by Fe
quired by Si | late law. | |--------|--|---|------------------------------------|-----------------------------|---|--------------------------------|-------------------------------------| | | 3. Generator's Name and Mailing Address GENERAL SUPER PLATING CO. INC., | | | A. State | AC 58 | ment Numb | 30 | | | oulo JOY RD, E SYRACUSE NY 13057 | | | B. State | Gen. ID | | | | | 4. Geherator's Phone (315) \$\frac{446}{2264}\$ 5. Transporter 1 Company Name 6.1 | JS EPA ID Number | | SAL | Trans. ID | | | | | , , | O 9 2 3 2 | 7 4 5 | 1 | | 0 2 7 | 3 | | | | JS EPA ID Number | | D. Tran | sporter's Phone | (11:1)1 | 79-5316 | | | 9. Designated Facility Name and Site Address 10. | 110 504 10 N b | | E. State | Trans. ID | | | | | WRC Processing Company(Recycling Pacili | US EPA ID Number | | <u></u> | sporter's Phone | () | | | | Walnus Lane, RD#5, Box 5553 | | | <u> </u> | Facility's ID | | | | | Postsville, PA 1790i PAD 9 | | ity's Phone(| | 22-4747 | | | | | 11. US DOT Description (Including Proper Shipping Name, Hazard Class, and | ners
Type | 13.
Total
Quantity | 14.
Unit
Wt/Vol | l.
Waste No. | | | | | * NON-HAZARDOUS WASTE, SOLID, FILTER CAKE | BAG | N/A
¿ ∪ ∵ | | 0 0 - 0 0 | 3 4 | N/A | | GWZW | B. RQ, HAZARDOUS WASTE, SOLID, N.C.S., ORM | -E,NA9139
(P006) | 0 V 3 | ва | 0000 | 3 Y | F006 | | 4 | Ċ. , | | | | | | | | ב
ק | d. | | | | | | , | | | | | ÷ | | | | | | | J. Additional Descriptions for Materials Listed Above Lab Pack Physical State Lab Pack Ph | ysical State | | K. Hand | ling Codes for V | Vastes Liste | d Above | | | a THIS MATERIAL IS NOT A HAZARBOUS PASSES | ACCORDING T | O PA LAV | | 1, 1 m | c | \$ se | | | b d | | | | T59/T50
Drying | d. « | | | | 15. Special Handling Instructions and Additional Information | | | | | | | | · | UT3 dambulad CODE = x | | | | | | • | | | ELEAGENCY COSTACT / (313) 446-1264 | | | | | | | | | Colli-Tabo 14 hour edebroador response 1-608 |)-424-9300 | | | | | - | | | 16. GENERATOR'S CERTIFICATION: I hereby declare that the contents classified, packed, marked, and labeled and are in all respects in proper condition for | of this consignment are
r transport by highway a | e fully and acc
according to ap | urately des
olicable int | scribed above by
ernational and nati | proper shiopii
onal governm | ng name and are
ent regulations. | | | If I am a large quantity generator, I certify that I have a program in place to reduce practicable and that I have selected the practicable method of treatment, storage, or and the environment: OR, if I am a small quantity generator. I have made a good fravailable to me and that I can afford. | r disposal currently avai | ilable to me whi | ich minimiz | es the present and | d future threat | to human health | | | | gnature | | | | MONTH 1 1 | DAY YEAR | | | 17. Transporter 1 Acknowledgement of Receipt of Materials | | | | | | | | 7 | | ignature | | | | MONTH | DAY YEAR | | | 18. Transporter 2 Acknowledgement of Receiptor Mauritals / / / / / / / / / / / / / / / / / / / | ignature, | 1 | The start | | MONTH | DAY YEAR | | | 19. Discrepancy Indication Space 5. Inc. (Omerical VEIGHT) / O | 499:115 £ | -
-
-
-
-
- | Ro = | ex 6 | | | | | 18. 5.1(1) F TRANS JOK FEL - 2 NC); 20. Facility Owner or Operator: Certification of receipt of hazardous materia | Is covered by this m | anitest excen | t as note: | 1 in Item 19 | | | | | transfer and the first control of the th | gnature () | dill W | 3 / | 1 | MONTH | DAY YEAR | | A | Form 8700-22 (Rev. 9/88) Previous editions are obsolete | ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر | 7-00 | 1140 | | | | READ INSTRUCTIONS A ADD | _ | COPIES | |--|--------------------------| | NEW YORK STATE | WHITE - ORIGINAL | | DEPARTMENT OF ENVIRONMENTAL CONSERVATION | GREEN - DIVISON OF AIR ' | | | WHITE REGIONAL OFFICE | | | WHITE FIELD REP. | | OCESS, EXHAUST OR VENTILATION SYSTEM | YELLOW - APPLICANT | | * | | | _ | C CHANGE
D DELETE | FORM 76-11-12
BEFORE ANSWER
ANY QUESTION | APF | PLICATION | FOR PER | | | | | | | | Ε, | | - AFFEIGAIVI | | • à | | | | | |----------|--|--|--|----------------------|--------------------------|-------------------------|---|-------------------------|-------------|--------------------------|--------------------|------------------|-------------------|------------------------------------|-----------------------------|--------------------|-----------------|--|--------------|------------------|---| | s | NAME OF OWNER | / FIRM | | | 9. NAME OF | AUTHORIZED | AGENT | | 110 |). TELEPHO | NE 19 FA | CILITY NA | ME (IF DIFFE | RENT FRO | M OWNER / FIRI | w) . | \neg | | | | | | Ë | GENERAL. | SUPER PLA | TING CO. | INC. | | | | | | | G
20 FA | ENER | AL SUP | ER PL | ATING C | O.Inc. | | | | | | | c | 2. NUMBER AND STREET ADDRESS 2.2. CELI DRIVE | | | | | | | | | | 1 | | LI DRI | | | | | | | | | | <i>T</i> | · <u> </u> | | | | | | | | ATE | 14 ZIP | 21. ČIT | Y - TOW | V-VILLAGE | | | 22. ZIP | $\neg \uparrow$ | | | | | | 1 | EAST SYR | | NY | 13057 | 12 (111-10 | 2 CITY - TOWN - VILLAGE | | 2 CITY - TOWN - VILLAGE | | TY - TOWN - VILLAGE | | 13 31 | A/E | 14 21 | | | SYRACU | | FLOOR NAME C | 1305
A NUMBER | 7 | | 0 | 6 OWNER CLASSIFICATION 5 DEVICE 11 DISCRETA 15 NAME OF P.E. OR ARCHITECT | | | | | | | | S.PE. | 17 TELEPHO | ONE M | AIN | • | | FIRST | | | | | | | | N | A COMMERCIAL | | | _ | PREF | PARING APPLICA | TION | OR ARC
LICENS | E NO | | | ART UP E | | | UMBERS OF PL | ANS SUBMITTE | ĒD . | | | | | | A | B NOUSTRIAL | | | OTHER
TELEPHONE | 10 CIGNATU | DE OF OWNER | C DEODECENT | ATIVE OR | ACENT MA | EAL | MC | - / - | YR | | L D | | | | | | | | | | | | (315) | + | RE OF OWNER | IT TO CONSTR | TUCT | | | | IEW SOUR | CONSTRUCT
ICE | | CERTIFICATE 1 | | ING
ICE | | | | | | | 129 EMISSION | 30 GROUND 3 | | 446-2264 | 3 INSIDE | 34 EXIT | 35 EXIT VE | LOCITY | 36 EXIT FLO | DW 37 | | ODIFICAT | юн
738 | 39 | MODIFICATION | ON BY SEASON | | | | | | | SEC | 29 EMISSION
POINT ID | ELEVATION (FT) S | TRUCTURES (FT) | HEIGHT (FT) | IMENSIONS (IN) | TEMP (°F) | (FT /S | ĒČ į | RATE (ACF) | | SOURC | E | HRS / DAY | | | | Fall | | | | | | В | y y 000 1 | 400 | 5 | 25 | 36 | 70 | 32.2 | 2 | 13649 | 9 | 130 | 2_ | 24 | 250 | 2 15 2 15 | 5 2 5 2 | 15 | | | | | | s | 41. | 1 Me | tals Pla | ting Roc | om | | | | 2 | 11 F | ick u | р Рс | ints | | | | | | | | | | Ē. | DESCRIBE
PROCESS
OR UNIT | 5 | | | 6 | | | | | | | | —į | | | | | | | | | | С | | | 8 | | | | | - ;- | | · | ! | | | | | | | | | | | | E | Europiou courno | Laguerra: I | .T | | | | | | | | | = | | | | | | | | | | | Ş
E | EMISSION CONTROL
EQUIPMENT I D | CONTROL
TYPE | MANUF | ACTURER'S NAM | ME AND MODE | L NUMBER | | DISP
MET | HOD M | TE INSTALL | ED USEF
IR LIF | E | | | | | i | | | | | | C. | 48 | 99 | | | | , | | | | | | | | | | | . ! | | | | | | D | | 49 50 | | | | | | 51. | 52 | _/_ | 53 | | | | | | | | | | | | s | CALCULATIONS | | | | | | | | | | | | | | | | ij | | | | | | E | İ | • | | | | | | | | | | | | | • | | į | | | | | | Ţ | | • | | | | | | | | | , | | | | | | į | | | | | | , | | | | | | • | | | | | | | | | . * | | | | | | | | ľ | v state of the second | • | | | | | 4 | | | | | | , | • | • | | | | | | | | Ė | | | | | · (s | <u> </u> | £7 | οŅ | | 1 | | | | | - - | | i | | | | | | | 7 | CONT | AMINANT | | | INPUT | T T | | EMISSIC | ons . | - - | h HC | OURLY EMISSIO | ONS (LEIS/HI | annual E | AISSIONS (LBS | Z/YR) | | | | | | s | 54 C . 14 m
| NAME | | CAS NUMBER | PRO 56 | OR UNI | IT RATING 59 | ACTUAL | Lucar I F | OW PERMIS | SIBLE EFF | TROLL | ERP | ACTUAL | ACTUAL | 10* PERMIS | SSIBLE | | | | | | E
C | Sulfona | dodecylbe
te | 2.5 | 1,5,5-,3 | 0-0 | | 1010 |),167 | , 2 6 | 5 0.1 | 77 | ί. | .167ж | ⁶⁵ 0,10
x 10- | 3[1,00] | 0 10 | (Y)_ | | | | | | 7 | Diventer | ıe | 70.
U U | ن ⁻ ن 3 ن | 6 - 3 7 | . 72. | 0 | :
33.3 | 75 7 | 6 77. | 78 | . 79 | 10-66
33.3 x | *10- | 3 ⁸¹ . | | ,
; | | | | | | , | Calcius | Silicate | 85 \ | | 6 - 2 | 87 | 68 89 | | 90 9 | . 02 | 93 | 94 | | 95.83. | 3 ^{96.}
6 0.500 | 97. 98. | 2 | | | | | | 0 | 99Sodium l | i-nitrobe | | J. S . 4 | امًا كـ د. | 1 102 | 103 10 | 3.5.3 | 105 | 6 67 | 17 108. | 10 | 3.3 x
4.17x | *10-
1104.1 | 7 111. | 112. 113 | / | | | | | | ۸ | 114 | | 0.0 | 1.2.76 | 8-4 11 | 6. 117 | 118. 11 | 4.17 | 120 1 | 6 21. | 123 | 12 | $^{10-3}_{4.50x}$ | x10-
4.5 | 3125 0 | 127 128 | <u> </u> | | | | | | F | litric | Acid | (). 7. | 6.9.73 | 7 - 2 | 1 132 | 133 13 | <u>4.50</u> | 7
135 1 | 6 4, | 138 | 13 | <u> </u> | x10- | 3 27.0 | 142 143 | <u></u> | | | | | | Ľ | <u> </u> | | | | - | - - | | | | | L_ | | | | <u> </u> | | | | | | | | SEC | TYPE | SOLID FUEL
TONS / YR | , % S | TYPE THOU | LIQUID FU
USANDS OF G | IEL
ALLONS/YR | % S | TYPÉ , | THOUS | GAS
SANDS OF C | F/YA , | BTU/CF | 6 ^ | PPLICABLE
RULE | | APPLICABLE
RULE | | | | | | | C
G | | | | 47. 148. | | 1 | 49. 15 | 0 | 151 | | | 52 | 153 | 212 | 154 | | - | | | | | | U | pon completion of cons
HE PROCESS, EXHAL
PECIFICATIONS AND | struction sign the stat | lement listed below
N SYSTEM HAS RE | and forward to the | e appropriate f | ield representa | D IN ACCOR | DANCE W | ITH STATE | | SIGNATURE | OF AUTH | IORIZED REP | RESENTAT | IVE OR AGENT | DATE | | | | | | | Š | 156 LOCATION COL | DE 157. FACILITY | / ID. NO 158. U | JTM (E) | 159. U.T.M (N) | | NUMBER | 161. DAT | E APPL. RE | CEIVED | 62 DATE AF | PPL REVI | EWED 163 F | REVIEWED | BY [,] . | <i>-</i> | | | | | | | | | <u> </u> | 11214 | (12.19) | 716.17 | 7 34 | -1711 | 168 | // | | / | / | | 11.11 | スペンでく | | - | | | | | | I | P
164 DATE ISSUE | ERMIT | T O | C O N S | | | FEE | 1 DEVIA
2. THIS I | S NOT A CI | ERTIFICATE | TO OPERAT | ſΕ | LL VOID THIS | | | , | | | | | | | A | _ / _ / | / | / | | | | | | | DDITIONAL
OF A CERTIF | | | . EQUIPMENT | MAY BE R | EQUIRED PRIOF | . 10 | A | | | | | | E N | | | 0 4 7 5 | T.O. | 0.0.5.5 | A T = | | 173. | | | | | | | | | ٦ğ | | | | | | Ç | C
169. DATE ISSUE | ERTIFI
D 170 EXPIRAT | | SIGNATURE OF | APPROVAL, | | FEE | | INSPECTE: | | ED DIFFERE | NCES AS | BUILT VS P | | ATEANGES INDICAT | ED ON FORM | Y | | | | | | U
S | 1/7را | 10 11/1 | 14/ | 108. 11 | <u> </u> | (22 | لــــــــــــــــــــــــــــــــــــــ | 3 □ | ISSUE CEF | RTIFICATE TO | O OPERATE | FOR SO | URCE AS BUI | | | | U
S | | | | | | E | <u></u> | | <u> </u> | | | | | 4. 🗆 | APPLICATI | ON FOR C.C | DENIED | | ATE | | INITIALED | · | E | | | | | | Ķ | 174. SPECIAL CON | NOITIONS | | | | | To To | | | | | | | | | | ٦ ٳ۲ | | | | | | Y | | | <u> </u> | | | | | ·
 | | | | | | | | | _ | | | | | | 1 | 3 | | | | | | 4 | | | | | | | | | | I | | | | | # PROCESS, EXHAUST OR VENTILATION SYSTEM | | YES | (fraids) | |--------|-------------------|----------| | WHITE | - ORIGINAL | | | GREEN | - DIVISON OF AIR | · 🕶 | | WHITE | - REGIONAL OFFICE | | | WHITE | - FIELD REP. | | | YELLOW | · APPLICANT | | | | D DELETE BEFORE A | TION A | APPLICATION | I FOR PEH | WIII IOC | ONSTRU | CI ON CE | RITHICA | ME TO | JUPERA | 16 | | | | | | |------------------------------------|--|--|--
--	--	--	--
--	---	--	--
CONTROL EFFIC'CY 63 6 78. 7 79. 7 93. 9	11.5x 10-3 35.8x 10-3 4 26.8x 10-3 13.3x 10-3	ACTUAL 65 1 - 51 10 - 3 35 . 10 - 95 26 . x10 -	FI ANNUAL E ACTUAL C 66. 69. 83. 215. 8 98. 3 161. 3 111. 3 79. 8
152 1 1 152 1 1 1 1 1 1 1 1 1	\$\\ \frac{11.5x}{10-3}\\ \\ \frac{35.8x}{10-3}\\ \\ \frac{426.8x}{10-3}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ACTUAL 65 1 - 53 10 - 35 10 - 95 26 . x10 - 1126 . 5 . x10 - 1140 . x10	Rep Annual E Actual C 66 69 83 3 161 3 79 8 17 126 3 31 0 75 141 22 . 5
100 100	IT RATING A 1 1 1 7 2 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EMIL CTUAL UNIT CTUAL UNIT CTUAL UNIT CTUAL UNIT CTUAL CO. CTUAL C	How Per
#11.5x 10-3 15.8x 10-3 10-	ACTUAL 65 -5 10 -3 50 35 95 26 10 -1 93 35 10 -1 10 -1 11 3 x10 -1 126 5 x10 -1	FRO ANNUAL E ACTUAL C 669 B 31 3 215 8 96 3 161 3 179 8 1 126 3 31.0 7 5141 22.5 E 184 REQUIRED PRIOR	MISSIONS (LB MISSI
100 100	IT RATING A A STATE OF	EMIL CTUAL UNIT CTUAL UNIT CTUAL UNIT CTUAL UNIT CTUAL	HOW PEF
0	101.	102	103. 104
123 124 125 126 127 128		129	131 132 133. 134 135
			
--	--	--	--
---	---	--	--
ACTUAL 65 .004: .002! 95 .001: .0003	24 / 81 12 95 6 91 11 1.8 126 126 126	0* PERMISSIBLE 7 66 0 24 2 83 1 12 7 98 0 62 113 11 18 27 126 0 186	
165 165	0% HOURLY EMERICAL PROPERTY E PRO	ACTUAL 65 .004 .002 .002 .001 .001 .001 .0003 .031 .007 .007 .007 .007 .007 .007 .007 .00	ACTUAL 166 66 61 24 81 12 96 6 111 1.8 126 126 1286 141 42 AP
175 17	100 PERMISSIBLE PERMISSIBL	CONTROL EFFICION CONTROL EFFICION EFFICION EFFICION EFFICION EFFICION EFFICION EFFICION EFFICION EFFICION B5 .004 B5 .0014 123 B5 .204 136 B5 .204 138 B5 .204 BTU/CF IS2 IS3	ACTUAL 65 .004 .002 .002 .001 .001 .001 .0003 .031 .007 .007 .007 .007 .007 .007 .007 .00
---	--	---	
--	--	--	--
--	--	--	---
--	--	--	--
--	--	---	---
6 70	6- 8 1	96. - d	OR UN
FPERMISSE 62 .004 77 .002 92 .01 107	78 93 93 93 123 123 138	. 00 79 . 00 94 . 09 109	12
100 100	F PERMISSE 62 .004 77 .002 92 .01 607 122 137 137 150 Sig	78 93 95 95 123 138 152 152 152 152 152 152 152 152 152 152	64 .00 .00 .00 .00 .00 .00 .00 .00
72 65 72 65	ON	965 AC NUMBER 4 7 1	.004 74 .002 99 .01 104 119 119 119 119 1100 1100 1100 11
TOSSO 190 TON TO SO YEATTH	Instrument tribut in ALL ATTOM SYSTEM IN ALL IN TO MAKE WITH I	CAS 55 7 7 8 6 7 7 7 8 6 7 7 7 8 6 7 7 7 8 6 7 7 7 8 6 7 7 8 6 7 7 8 7 7 8 6 7 7 7 7	THOUSAND IN THE SPECIAL STRUCTURE ST
138 138	LE EFFIC. C. S.	OCCEPTION TO SHALL VENE THE CONTRACT OF VE	AFF
71 72 88 71	97 97 97 97 97 97 97 97 97 97 97 97 97 9	99 C 73 St. D 75	1004 74 75 76 77 76 77 76 77 76 77 76 76 76 76 76
--	--	---	---
---	--	---	--
--	---	--	---
····		;	_ `
1801 1801 1801 1801 1801 1801 1801 1801 1801 1801 18	0.1 .102 .006 .006 .08 .004	ACTU	102 A 100
16 16 16 16 16 16 16 1	PERMISSON PERMIS	10 1 1 7	BILLY OF JUL
10 - 7 10 - 7	OR O	100 RZ RZ RZ RZ RZ RZ RZ	11 ING
17 - 7 18 - 7 19 - 7 10 - 7	OR O	100 RP RP RP RP RP RP RP	MING
--		5	General Super Plating Company 2 NUMBER AND STREET ADDRESS
107 1 105 107 1	.078 .078 .078 .078 .078 .078 .078 .078	A 111A1 10 PERMISSIBLE 1.6. 68 468 0 468 0 57 68 468 0 57 68 68 68 68 68 68 68 68 68 68 68 68 68	
discussion and approval of Mr. McPeck of NYSDEC. Both drains were constructed of 4-inch PVC drain pipe placed at a depth of 4 to 6 feet and surrounded by pea size gravel. Water was pumped from the sump to the GSP treatment plant. GSP completed construction of the interception system in September, 1988. In August 1989, GSP advised NYSDEC that it would continue to pump ground water from the sumps, treat the ground water in the facility's existing treatment system, and submit periodic data to NYSDEC as appropriate. ### Evaluation of Alternative Remediation Technologies Blasland & Bouck and GSP examined the feasibility of alternative technologies and remediation programs for addressing the ground-water quality concerns at the Joy Road facility. In general, it was determined that there were no usable alternatives to pump and treat. Ground-water remediation technologies considered included: in situ demobilization of chromium through chemical injection; chemical stabilization using a trench backfilled with a filter material designed to react with the chrome in ground water so as to reduce its mobility; and a slurry bentonite cutoff wall. Insitu demobilization of chromium would require injection of pH control compounds and ionic solutions designed to form insoluble chromium salts. The deficiency with the technology was that the reaction was reversible and may permit chromium leaching in the future. Passive chemical prescription as ground-water flowed across an interception trench required diligent monitoring and could allow chromium-impacted water to escape beyond the trench. A soil-bentonite cutoff wall would not improve the performance of a ground-water extraction system and therefore was not considered further. In the final analysis, the ground-water pump and treatment system originally installed and enhanced offered the best technical solution insuring capture of contaminated ground-water removal of chromium from the environment, ease of operation, and monitoring and expediency. ### Evaluation of Recovery System GSP's rapid initial responses, combined with the floor replacement and modification of the containment system, eliminated the source of chromium solution to the subsurface. Because of the low hydraulic conductivity of the soils and the limited time of discharge (less than one year), all parties agreed that the movement of chromium solution away from the GSP building was extremely limited. During April 1989, GSP evaluated the performance of the recovery system. Ground-water recovery rates fluctuated with the water table but the average recovery rate was between 4 to 5 gpm. The recovery system tests demonstrated its capability to operate within the reported maximum 15 gpm capacity of the recovery system pump. Highest observed rates of ground-water flow observed were approximately 12 gpm, indicating that the pumping system could effectively handle the maximum ground-water flow rate entering the collection laterals. GSP has been collecting and analyzing ground-water samples from the recovery system. Confirmatory analyses have been conducted by Upstate Laboratories (Upstate) of Syracuse, New York (Upstate's recent analytical data is attached to this report). Various reports summarizing the recovery system performance were previously submitted to NYSDEC. A graph of the average monthly chromium concentrations measured by GSP since the initiation of ground-water recovery is shown on Figure 4. The confirmatory analysis conducted by Upstate plotted on Figure 4 shows good agreement with the GSP analyses. As Figure 4 shows, the average monthly chromium concentration has decreased exponentially since the initiation of ground-water recovery. The initial chromium concentration was 21 mg/L. The average monthly chromium concentration is now 0.1 to 0.2 mg/L. This represents a 99 percent reduction in chromium concentration. Chromium concentrations have remained at this extremely low level for more than a year. Successful ground-water remediation programs often end when the concentration of the chemical of concern reaches a point when it is no longer technically feasible, prudent, or effective to continue the remediation (i.e. 0.1 - 0.05). Figure 4 shows that chromium concentrations have reached such an asymptotic position. Studies by the Oak Ridge National Laboratory and others conclude that this leveling off indicates that further reductions of chromium concentration are not likely to be achieved (Doty, C.B. and Travis C.C. The Effectiveness of Groundwater Pumping as a Restoration Technique. Oak Ridge National Laboratory Report ORNL/TM-11866, May, 1991). It is our opinion, therefore, that continued operation of the ground-water recovery system will not result in any measurable improvement in ground-water quality. County data indicate that there are no water supply wells in the immediate area of the facility or other potential receptors of ground-water that may be at risk. Given these circumstances, we recommend permanently turning off the ground-water recovery system. In conjunction with the termination of operation of the ground-water recovery system, we would propose to perform quarterly ground-water monitoring from the sump through July, 1995. At that time, if the data so warrants, we would propose to NYSDEC a reduced monitoring schedule. It has been confirmed by the outside laboratory (Upstate Laboratory) that all sample analyses will be performed using appropriate methodology to achieve a detection limit at or below the state ground-water standard for chromium. The analysis from each round of monitoring will be promptly forwarded to Mr. Steve Eidt of the NYSDEC upon receipt. If after the systems operation has been terminated there are two consecutive monitoring periods in which chromium levels exceed 1 mg/L, then GSP would consider re-examining the status of the site, and evaluate remedial alternatives in conjunction with the Onondaga County Department of Drainage and Sanitation (OCDDS) and, if appropriate, install a ground-water extraction and treatment system acceptable to OCDDS. Respectfully submitted, Tyler E. Gass, C.P.G., PHg ATTACHMENT 1 #### BLASLAND & BOUCK ENGINEERS, P.C. ENGINEERS & GEOSCIENTISTS 6723 Towpath Road. Box 66. Syracuse. New York 13214-0066 (315) 446-9120 FAX: (315) 449-0017 March 29, 1993 Mr. Rodney Campbell Environmental Coordinator General Super Plating Co., Inc. 22 Celi Drive East Syracuse, New York 13057 Re: Joy Road Plant Ground-Water Recovery System File: 300.07 #2 Dear Mr. Campbell: The purpose of this letter is to provide a summary of the performance of the ground-water recovery system at the General Super Plating (GSP) Joy Road facility in East Syracuse, New York. Based upon the chromium concentration data collected in 1991 and 1992, we are recommending that the site has been effectively remediated and that the recovery system be permanently shut down. #### Background In May 1988, General Super Plating Co., Inc. (GSP) responded to a suspected chromium solution discharge (determined to be the result of a defective floor lining within the containment area) by reporting the incident to the New York State Department of Environmental Conservation (Region 7) (NYSDEC) and retaining Blasland & Bouck Engineers, P.C. (Blasland & Bouck) as its consultants. Initially GSP installed four well points inside the building and began pumping water from the well points to the facility's existing wastewater treatment system. This was done with the consent and knowledge of NYSDEC and the County of Onondaga (Department of Drainage and Sanitation). Thereafter, Blasland & Bouck was retained to evaluate the extent of the release and to recommend remedial measures. A proposal was submitted to NYSDEC in June, 1988 in which Blasland & Bouck recommended a shallow interception Mr. Rodney Campbell March 29, 1993 Page 2 trench along the north wall of the GSP building to limit the migration of dissolved chromium. GSP promptly installed a 2-to-3 foot deep interception trench adjacent to the parking lot and building. PVC drain pipe was placed in the trench and the trench was backfilled with granular material. A sump was constructed at each end of the interception trench and water from the trench was pumped to the GSP plant treatment system. The general location of the interception trench is shown on Figure 1. As a follow up to the initial work and following discussions with NYSDEC, Blasland & Bouck conducted a qualitative assessment on the distribution of dissolved chromium in the subsurface and a well user survey. At the time the release was identified, the plant had been in operation for only one year. Because of the short operating time and the low hydraulic conductivity of the soils, it was reasonable to assume that the dissolved chromium was restricted to the immediate vicinity of the GSP building. The NYSDEC expressed agreement with this assumption. In mid-June 1988, 10 hand-auger borings were placed around north and west of the GSP building. The borings were advanced to an average depth of 7 feet. Soil and water samples from the borings were visually described and the temperature, pH, and conductivity of the water in the boreholes were measured. The results were presented to NYSDEC in a letter report dated August 3, 1988. Only two borings, both located immediately adjacent to the building, showed indications of chromium, either by high conductivity (>5,000 umhos) or visual observation. The chromium solution discharge was traced to a breach of a specially-installed floor lining. As a result, a new system was engineered by Blasland & Bouck and installed. New concrete curbs were installed around the manufacturing and treatment areas. The newly designed containment area was covered with an epoxy/vinyl ester coating. In order to ensure complete capture of any remaining dissolved chromium, Blasland & Bouck recommended a more extensive ground-water recovery system. The ground-water recovery system consisted of a 12-foot			
deep sump at the northwest corner of the property with two lateral drains. One drain was constructed along the west side of the building and one drain was constructed parallel to Joy Road. The location of the drains and sump are shown on Figure 1. Both drains were constructed of 4-inch PVC drain pipe placed at a depth of 4-to-6 feet and surrounded by pea-gravel. Water was pumped from the sump to the GSP treatment plant. GSP completed construction of the interception system in September, 1988. Mr. Rodney Campbell March 29, 1993 Page 3 In August 1989, GSP advised NYSDEC, that it would continue to pump ground water from the sumps, treat the ground water in the facility's existing treatment system, and submit periodic data to NYSDEC as appropriate. ### Evaluation of Recovery System GSP's rapid initial responses, combined with the modification of the containment system, eliminated the source of chromium solution to the subsurface. Because of the low hydraulic conductivity of the soils and the limited time of discharge (less than one year), the movement of chromium solution away from the GSP building was limited. During April 1989, GSP evaluated the performance of the recovery system. Ground-water recovery rates fluctuated with the water table but the average recovery rate was between 4 to 5 gpm. The analysis recovery system tests demonstrated its capability to operate within the reported maximum 15 gpm capacity of the recovery system pump. Highest observed rates of ground-water flow observed were approximately 12 gpm, indicating that the pumping system could effectively handle the maximum ground-water flow rate entering the collection laterals. GSP has been collecting and analyzing ground-water samples from the recovery system. Confirmatory analyses were conducted by Upstate Laboratories (Upstate) of Syracuse, New York (Upstate's analytical data for 1992 is attached to this report). Various reports summarizing the recovery system performance were submitted to NYSDEC. A graph of the average monthly chromium concentrations measured by GSP since the initiation of ground-water recovery is shown on Figure 2. The confirmatory analyses conducted by Upstate are also plotted on Figure 2. The Upstate analyses show good agreement with the GSP analyses. As Figure 2 shows, the average monthly chromium concentration has decreased exponentially since the initiation of ground-water recovery. The initial chromium concentration was 21 mg/L. The average monthly chromium concentration is now 0.1 to 0.2 mg/L. This represents a 99 percent reduction in chromium concentration. Although the chromium concentration is above NYSDEC guidance value of 0.05 mg/L for chromium in ground water, the chromium concentration has apparently leveled off. Studies by the Oak Ridge National Laboratory and others conclude that this leveling off indicates that further reductions of chromium concentration are not likely to be achieved (Doty, C.B. and Travis, C.C. The Effectiveness of Groundwater Pumping as a Restoration Technology. Oak Ridge National Laboratory Report ORNL/TM-11866, May, 1991). It is our opinion, therefore, that continued operation of the ground-water recovery system will not result in any measurable improvement in ground-water quality. County data indicate that there are no water supply wells in the immediate area of—the facility or other potential Mr. Rodney Campbell March 29, 1993 Page 4 receptors of ground-water that may be at risk. Given these circumstances, we recommend, permanently turning off the ground-water recovery system. If you have any questions regarding this report, please do not hesitate to contact me. Very truly yours, BLASLAND &/BOUCK ENGINEERS, P.C. Wer E. Gass Executive Vice President SJR/kdm 1593914A Enclosures cc: Doreen A. Simmons, Esq., Hancock & Estabrook	5	LOCATION	FACILITY
312600112741 PERMIT TO CO	TM(E) 59 UTM(N 1 1 5 7 7 1 9 O N S T R U C GNATURE OF APPROVAL	С Т	HT FEE
THRU BOOTH AFN WILL USEANCE STARFAR SEE			*
129		130	i
---	----------------------------		INDUSTRIAL CODE:
in Section XV of this permit. #### IV. EFFLUENT LIMITATIONS AND PRETREATMENT STANDARDS (continued) B. The wastewater discharge of the permittee shall comply with the following effluent limitations and pretreatment standards at the point of discharge to Sewer #1 and Sewer #2. TABLE II: Onondaga County Effluent Limitations	TABLE II: Onondaga County Effluent Limitations		
failure to supply information to this office in accordance with Article IV, Section 4.03 (Permit Conditions) of the Rules and Regulations. #### XII. MONITORING FACILITIES - A. In accordance with Article IV, Section 4.07, of the Rules and Regulations, if there are inadequate provisions for the collection of representative wastewater samples and accurate discharge flow measurements, this office may require that an adequate monitoring facility be installed by the permittee at its own expense. - B. The monitoring facility must be approved by this office before installation. - C. The permittee shall be responsible for all maintenance of the sampling manhole and calibration of the monitoring equipment. #### XIII. WASTE MATERIAL DISPOSAL - A. Any screenings, sludges, solids, waste oils, or other waste materials <u>removed or separated from the permittee's authorized discharge or generated as a result of the wastewater treatment process shall be disposed of in such a manner as to prevent entry of such materials into navigable waters, ground water, storm drains, and the sanitary sewer system.</u> - B. The following information regarding the disposal of waste materials, as defined above, shall be reported to the County of Onondaga in conjunction with annual reporting to the NYSDEC and the USEPA. Submitted data must include the following information. - 1. List the source(s) of materials to be disposed of. - 2. Describe the nature of the waste (hazardous or non-hazardous). - a. If nonhazardous, describe the waste and how it is created. - b. If hazardous, provide the 40 CFR Part 261, Subpart C designation for the waste removed (i.e. characteristic waste, listed waste or a mixture). If it is listed, provide the F,K,P or U listing for the waste material removed. - c. List the facility's hazardous waste generator identification number. - 3. Include the approximate volumes and weights of each waste material disposed of. - 4. Describe the method by which the wastes were removed and transported. - 5. Report the company contracted to remove such materials and the final disposal or recovery location. #### XIV. COMPUTATION AND PAYMENT OF INDUSTRIAL WASTE SURCHARGE - A. The permittee shall pay its proportionate share of the cost of operation and maintenance and local debt retirement of the treatment system. - B. These charges shall be computed by this office using the formulae in Article V, Section 5.02, of the Rules and Regulations. - C. Payments shall be made to the County of Onondaga by the permittee no less often than annually unless prior written approval has been granted by the Commissioner. # A. SELF-MONITORING REPORT SCHEDULE 1. The permittee shall submit Self-Monitoring Reports in accordance with the schedule detailed in Table III. Failure to submit the Self-Monitoring Report (SMR) by the due date specified in Table III shall subject the permittee to the fines and penalties prescribed under Article VII of the Rules and Regulations. TABLE III: SELF MONITORING REPORT SCHEDULE FOR 1995 - 1996	Perio	Period Covered	
Instantaneous/			
eighty (180) days prior to the date on which the permit is scheduled to expire. DATE By the authority of **SIGNATURE** <u>JOHN M. KARANIK</u> COMMISSIONER # Appendix A: Self-Monitoring Report Forms # Appendix B: USEPA 126 Priority Pollutants ### **USEPA Priority Pollutants** Acenaphthene Acrolein Acrylonitrile Benzene Benzidine Carbon tetrachloride (tetrachloromethane) Chlorobenzene 1,2,4-trichlorobenzene Hexachlorobenzene 1,2-dichloroethane 1,1,1-trichloreothane Hexachloroethane 1,1-dichloroethane 1,1,2-trichloroethane 1,1,2,2-tetrachloroethane Chloroethene Bis(2-chloroethyl) ether 2-chloroethyl vinyl ether (mixed) 2-chloronaphthalene 2,4,6-trichlorophenol Parachlorometa cresol Chloroform (trichloromethane) 2-chlorophenol 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 3,3-dichlorobenzidine 1,1-dichloroethylene 1,2-trens-dichloro-ethylene 2,4-dichlorophenol 1,2-dichloropropane 1,2-dichloropropylene (1,3-dichloropropene) 2,4-dimethylphenol 2,4-dinitrotoluene 2,6-dinitrotoluene 1,2-diphenylhydrazine Ethylbenzene Fluoranthene 4-chlorophenyl phenyl ether 4-bromophenyl phenyl ether Bis(2-chloroisopropyl) ether Bis(2-chloroethoxy) methane Methylene chloride (dichloromethane) Methyl chloride (dichloromethane) Methyl bromide (bromomethene) Bromoform (tribromomethene) Dichlorobromomethene Chlorodibromomethane Hexachlorobutadiene Hexachloromyclopentadiene Isophorone Naphthalene Nitrobenzene 2-nitrophenol 4-nitrophenol 2,4-dinitrophenol 4,6-dinitro-o-cresol N-nitrosodimethylamine N-nitrosodiphenylamine N-nitrosodi-n-propylamin Pentachlorophenol Phenol Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Di-N-Butyl Phthalate Di-n-octyl phthalate Diethyl Phthalate Dimethyl phthalate 1,2-benzanthracene (benzo(a)) anthracene Benzo(a)pyrene (3,4-benzo-pyrene) 3,4-Benzofluoranthene (benzo(b) fluoranthene) 11,12-benzofluoranthene (benzo(b) fluoranthene) Chrysene Acenaphthylene Anthracene 1,1,2-benzoperylene (benzo-(ghi)perylene) Fluorene Phenanthrene 1,2,5,6-dibenzanthracene (dibenzo(,h) anthracene) Indeno (,1,2,3-cd) pyrene (2,3-opheynylene pyrene) Pyrene Tetrachloroethylene Toluene Trichloroethylene Vinyl chloride (chloroethylene) Aldrin Dieldrin Chlordane (technical mixture and metabolites) 4,4-DDT 4,4-DDE (p,p-DDX) 4,4-DDD (p,p-TDE) Alpha-endosulfan Beta-endosulfan Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide (BHC-hexachlorocyclohexane) Alpha-BHC Beta-BHC Gamma-BHC (lindane) Delta-BHC (PCB-polychlorinated biphenyls) PCB-1242 (Arochlor 1242) PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221) PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260) PCB-1016 (Arochlor 1016) Toxaphene Antimony Arsenic Beryllium Cadmium Chromium Copper Cyanide, Total Lead Mercury Nickel Selenium Silver Thallium Zinc 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) #### **COUNTY OF ONONDAGA** # DEPARTMENT OF DRAINAGE AND SANITATION 650 HIAWATHA BOULEVARD, WEST SYRACUSE, NEW YORK 13204-1194 478-3755 - 425-2260 JOHN H. MULROY COUNTY EXECUTIVE JOHN M. KARANIK COMMISSIONER #### ONONDAGA COUNTY INDUSTRIAL WASTEWATER DISCHARGE PERMIT	PERMIT NUMBER : 37	DATE ISSUED	: December 16, 1987
measurement is not practicable, water use records may be substituted in place of flow measurement. Additional sampling and flow measurement may be performed by the permittee using approved methods. The data obtained by the permittee may be used at the discretion of the Commissioner as supplemental data to show compliance with permit effluent limitations and pretreatment standards or to be used in addition to county data for computations of the Industrial Waste Surcharge. All analyses shall be performed in accordance with approved USEPA analytical methods (40 CFR 136) as stated in the latest edition of the following references: STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16th Edition, 1985, American Public Health Association, New York, New York 10019. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES, Environmental Monitoring and Support Laboratory, Office of Research and Development, March 1983, Environmental Protection Agency, Cincinnati, Ohio 45268. The sampling schedule cited below shall become effective the day this permit is issued.		•	
enters; - c. The method of disposal for toxic organic compounds used must be specified. - d. The procedures for assuring that toxic organic compounds do not spill or leak into the waste stream must be detailed. - e. A comparison of the toxic organic compounds found in the effluent and selection of the most probable source; and - f. An evaluation of any toxic organics found in the effluent, but not on the raw materials list and a determination of those formed as reaction products or by-products. - Evaluate the various control options explored, for example: in-plant process modification, chemical substitution, partial or complete recycling, chemical reuse, neutralization, ion exchange, or operational changes. - 3. Evaluate the effectiveness of control options employed in meeting the industrial effluent limits. If the permittee is not in compliance with the effluent standard, the permittee must choose a control option and the projected schedule for achieving compliance. - 4. The permittee must obtain the approval of this department, as the pretreatment program Control Authority, to implement the plan for achieving compliance. #### XVII. RECORD KEEPING Records of all information resulting from self-monitoring activities shall be maintained for a minimum of three (3) years in accordance with 40 CFR 403.12(n). These records shall be available for inspection and copying by the Department of Drainage and Sanitation as the Control Authority. #### XVIII. AUTHORIZATION AND AGREEMENT HEABERT N. GERKARDT PRINTED NAME OF PERSON SIGNING This permit and the authorization to discharge industrial wastewater into the public sewer system shall be legally binding upon the permittee. This permit shall expire three (3) years from the date of issuance. The permittee shall not discharge after the date of expiration. In order to receive a new permit and continued authorization to discharge wastewater to the public sewer system beyond the date of expiration, the permittee shall have paid all industrial waste surcharges owed to the County of Onondaga and submit an up-to-date industrial waste questionnaire and other information as required by the Commissioner no later than 120 days prior to the expiration date.	Ву	the	authority
94.4			
--|---------------------------------------|--------------------------|------------------------------------|------------------------------|---| | UNIFORM HAZARDOUS
WASTE MANIFEST | 1. Generator's US EPA ID No. N Y D 9 8 2 7 2 1 | Do | Manifest
cument No. | 2. Page 1
of 1 | | n the shaded areas
ed by Federal law | | 3 Generator's Name and Mailing Address GR | NERAL SUPERPLATING | , | | A. State Mar | nifest Document I | | | • | CELI DRIVE | | * | | | 29036 | | | ST SYRACUSE, NY. 1 | 3057 | | B State Ger | erator's ID-(Gen. | Site Address) | | 4 Generator's Phone (315):446-22 5 Transporter 1 Company Name | | S EPA ID Numbe | 7 | C State Trai | s. ID-NJDEPE | | | RFE INDUSTRIES, INC. | •, • | 5 5 0 0 | • | O. Grain Trus | Decal No. | 88958B | | 7 Transporter 2 Company Name | | S EPA ID Numbe | | D Transport | er s Phone 301 | 15000 | | | | 1 1 1 1 1 | | | s ID-NUDEPE | 451-0229 | | 9 Designated Facility Name, and Site Address | ָט 0י | S EPA ID Numbe | | | Decai No | | | RFE INDUSTRIES, INC. | • | | | F. Transports | eris Pache | | | FOOT OF JERSEY AVENUE | · | | | G State Faci | lity's ID | | | JERSEY CIty, NJ. 07302 | ס פינא פ | 55091 | | H. Facility's | hcne; 201; | 451-0229 | | US DOT Description Industry Proper Shippin © Number and Packing HM | ng Name, Hazard Class or Divisio.
G <mark>roup)</mark> | ~ | 12 Cante
No. | | Total Join
Lantity (VVVV) | on Waste No | | a. | , | | : ! | | | | | K RQ WASTE CYANIDE IN | ORGANIC, N.O.S. 6. | 1 mn 1588 | 1 | | | 1 | | | | G. II | 001 | DHOO | 0118 | F 0 0 7 | | X RQ WASTE CYANIDE,+I | NORGANIC N.O.S. 6. | 1 198 1533 | 1 | , | | F 0 0 7 | | | | 9.6 TT | | | - A 11: 0 | | | | | 1030, 44 | 1001 | | 0.747 | <u> </u> | | 1 : | • | · | | : | • | | | | , | • | 1 '. i | ì | i | 1 | | J | · · · · · · · · · · · · · · · · · · · | | ! : | ; | | | | | • | | • | 1 | | | | · · · · · · · · · · · · · · · · · · · | | | | | <u> </u> | 1 1 | | Additional Descriptions for Materials Listed Ab CATTIONER (Choose) | ove | | . ! | K. Handling | Dodes for Wastes | Listed Above | | AU CATHODES (DOO2) | | • | : | | 1 | | | <u>a</u> | | | | a. T] (|) <u> </u> | | | 13 KCN, 27 NaOH 0.27 AU (DO03 | | | | | | | | POT RESTN 6, 87 Bolyman R T S | formation | | | <u> </u> | (F 4 | | | | | • | | * | .e | | | CYANIDE BEARING ATERIARS | CONTAINS PRECIOUS | ETRAS FO | R RECIA | I II-04 |) STOW AL | AY FROW ACC | | | | | | | | | | 15 GENERATOR'S CERTIFICATION: hereby de
massified disched that ad and abeled, and | | | | | | | | go entitle gularion. | 213 // 211 20200 2 // 3/3C3. 33f | 21 21. 31 112 363 | * 'Y'' | | | | | for importance in general to construct makes the second of | , have a program in plane to reptioned to the program of the program and the many of the program and progr | ia na lotu na and
naor lotorada or | 04.01 01.92
2.724 944 | to Higenerared
Till Successione | io ne degrae in | k e tyle mityb bi je
toly, te treedemooni | | သည်။ မောက်သည် မြန်မာ ကို မောက်သည် အမျှင်းပြုခဲ့ခဲ့က
ကိုများသည် ကိုများနှင့် မြန်မာ ကိုများသည် ကိုများသည်။ | em DALJ igmisioma gluariti ga | حيد العوالية عمد | 13-1111 | भर भी से हैं। | m m isy million and a | art of the second | | The state of s | 3 17 11 - 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | Achord & Singing | | , ر ور | 12 1 | | | . 4 . 4 3 = | | Trancaloner (Aukroline) by Replement or Repellon un | Viateriais | the I made | | man differ | <i></i> | 0 1 - 1 - 1 - 3 | | Princer Tilbed (jami) | Sign atur | '9/7 ~ | 1 | | | 7 | | CARLOS CALAR | / 0. | بالدكينسك | ~ | | • | 040496 | | 13 Yalfe Mar 2 Acknowled temper of Reds of th | Materials | 1 - 70 | | | | 44444 | | Printing Til delt ligme | . Sejnatur | | | | | ege 5 (2a) - 4 cc | | | | | | | | <u> </u> | | 19 Discrepandy orthodich Boace | | | | . : | | -: | | | | | | | | | | | | | • | | | | | 20 | | | | | | <u> </u> | | 20 Facility Owner or Operator Certification of rece
Printed/Typed Name | | | 2XC270: 3S 10 | red ontem 13 | | Magen Sau care | | · internal Aber adula | Signatur | * 1 | | U | | Vionin Jay rear | |) = 1 = 1 = 0 12 2 12 12 12 12 12 1 | k Co | M | 200 | pars | | 040695 | | Form F: Equipment Calibration Summary | | | | | | | | |---------------------------------------|---------------------|---------------------------------|---------------------------------------|--|--|--|--| | Instrument
#/Description | Date of Calibration | Results
(Including Drift) | Signature and Title of Representative | | | | | | Chrome Treat | 4/3/95 | 6.95 - 7.00 | Lean Lodoin | | | | | | pH | | 4.00 - 4.00 | Environmental Eng. | | | | | | Chrome Treat | 4/19/95 | 6.97 - 7.00 | Lean Audoin | | | | | | pH | | 4.01 - 4.00 | Environmental Eng. | | | | | | N-1 | 4/3/95 | 7.11 - 7.00 | te∝ toλοί. | | | | | | pH | | 4.08 - 4.00 | Environmental Eng. | | | | | | N-1 | 4/19/95 | 7.07 - 7.00 | tean Jadoin | | | | | | pH | | 4.05 - 4.00 | Environmental Eng. | | | | | | N-2 | 4/3/95 | 6.7 - 7.00 | for Jodon | | | | | | pH | | 10.0 - 10.00 | Environmental Eng. | | | | | | N-2 | 4/19/95 | 7.1 - 7.00 | رومہ کرماہ سے | | | | | | pH | | 9.9 - 10.0 | Environmental Eng. | | | | | | Final | 4/3/95 | 6.9 - 0.0 MV | Low Jodon | | | | | | pH | | 170.0 - 176.0 MV | Environmental Eng. | | | | | | Final | | 2.1 - 0.0 MV | tean lodon | | | | | | pH | | -176.4 - 176.0 MV | Environmental Eng. | | | | | | | | | | | | | | | | | 0.0MV = 7.0
-176.0 MV = 10.0 | Attach official calibration reports during the months of March, June, September, and December. | Form G: pH Monitoring | | | | | | | | | |-----------------------|----------------------|-----|--|--|--|--|--|--| | Date | Time | рН | | | | | | | | No pH excedence | es for reporting per | od. | · . | · | , | #### April, 1995 #### Summary of Recent Changes in Waste Treatment System In our efforts to continuously improve our operations while maintaining our pollution prevention strategy, the following changes have been incorporated into our processing and treatment systems to control flow streams: - Our metals job shop room has been re-engineered, taking advantage of common tanks for specific processes in reducing the overall water use in this area by over 25% while saving on chemical usage. - We are engineering a new automated plating line to replace our current plastic plating machine. The new machine will have updated automation, with enhanced flexibility in a physically smaller process line. It is anticipated that the overall water consumption will be signficantly reduced as compared to our current usage. This line will include evaporative recovery at etch, chrome and nickel stations. Additionally, it will incorporate acid recovery of the metal strip solutions. ### GENERAL SUPER PLATING CO., INC. 22 CELI DRIVE EAST SYRACUSE, NEW YORK 13057 (315) 446-2264 FAX (315) 446-4419 December 30, 1992 Mr. Joseph Mastriano County of Onondaga Department of Drainage and Sanitation 650 Hiawatha Boulevard, West Syracuse, New York 13204-1194 Re: Monthly Self-Monitoring Report General Super Plating Cmpany, Inc. Wastewater Discharge Permit #36 22 Celi Drive Dear Mr. Mastriano: Eclosed please find a completed Self-Monitoring Report for the month of November 1992 for our General Super Plating Company, Inc.
facility located at 22 Celi Drive in East Syracuse, New York. As required by the Ononoaga County Department of Drainage and Sanitation, the completed report consist of the following items: - o Form A: Analytical Data for Sewer #2 - o Form C: Water use Data for Sewer #2 - Form E: Waste Manifest Disposal Summary (with accompanying manifests) - o Form F: Equipment Calbration Summary If you have any questions or comments on this report, please contact me at 446-2264. Sincerely, Rodney Campbell Environmental Coordinator | ^a Fo | Form A: Analytical Data for Sewer # 2 (Process Wastewater) | | | | | | | | | |-----------------|--|-----------------------------|-----------------------------|-----------------------------|------------------------------|----------------------------|------------------------------|------|--| | Parameter | Daily
Effluent
Limitation | Day 1
Date:
Nov.
2 | Day 2
Date:
Nov.
3 | Day 3
Date:
Nov.
4 | Day 1
Date:
Nov.
16 | Day 2 Date: Nov. 17 | Day 3
Date:
Nov.
18 | Avg. | | | Cd (mg/l) | .11 | .01 | .02 | .04 | .02 | .03 | .03 | .03 | | | Cr (mg/l) | 2.77 | 1.3 | .9 | 1.1 | .5 | .2 | .1 | .68 | | | Cu (mg/l) | 3.38 | .2 | .9 | . 5 | .6 | .4 | .1 | .45 | | | T-CN (mg/l) | 1.20 | .02 | .02 | .03 | .02 | .03 | .04 | .03 | | | Pb (mg/l) | .69 | .1 | .1 | .1 | .1 | .1 | .1 | .1 | | | Ni (mg/l) | 3.98 | 1.1 | .6 | .8 | 1.7 | 1.9 | . 9 | 1.17 | | | Ag (mg/l) | .43 | .01 | .02 | .01 | .02 | .02 | 01 | .02 | | | Zn (mg/l) | 2.61 | .01_ | .03 | .03 | .01 | .02, | .01 | .02 | | | pH (S.U.) | 5.5 - 9.5 | 8.8 | 8.6 | 8.5 | 8.5 | 8.6 | 8.2 | N/A | | | TTO's (mg/l) | | | | | • . | | · | | | ^{**} Attach official independent laboratory (must be NYSDOH ceritified) results for the months of March, June, September and December as required in Section XV, Part 2 of Permit # 36 | F | orm C: Water Use Data for the | Month of November | for Sewer # 2 | |------|-------------------------------|-----------------------|--------------------| | Date | Wastewater Discharged (gal) | # of Production hours | Avg Flowrate (gph) | | 1 | 100 | PRODUCTION | | | . 2 | 53,890 | 13 | 4,145 | | 3 | 63,867 | 14 | 4,562 | | 4 | 58,816 | 13 | 4,524 | | 5 | 67,793 | 15 | 4,520 | | 6 | 57,011 | 14 | 4,072 | | 7. | NO . | PRODUCTION | | | 8 | ио | PRODUCTION | | | 9 | 48,580 | 13 | 3,737 | | 10 | 56,120 | 13 | 4,317 | | 11 | 57,720 | 13 | 4,440 | | 12 | 68,810 | 14 | 4,915 | | 13 | 66,931 | 13 | 5,149 | | 14 | NO | PRODUCTION | | | 15 | NO | PRODUCTION | | | 16 | 39,658 | 14 | 2,833 | | 17 | 60,571 | 16 | 3,786 | | 18 | 58,685 | 13 | 4,514 | | 19 | 47,060 | 12 | 3,922 | | 20 | 56,125 | 13 | 4,317 | | 21 | NO | PRODUCTION | | | 22 | NO | PRODUCTION | | | 23 | 68,633 | 16 | 4,290 | | 24 | 58,364 | 15 | 3,891 | | 25 | 40,015 | 14 | 2,858 | | 26 | NO | PRODUCTION | | | 27 | NO | PRODUCTION | | | 28 | NO | PRODUCTION | | | 29 | NO | PRODUCTION | | | 30 | 44,772 | 16 | 2,798 | | | | | | ### Form E: Waste Material Disposal Summary (attach manifests where appropriate) | Date | Waste Material | Quantity | Hazardous
(Y/N) | USEPA/NY
Classification | Method of Disposal and Carrier | |----------|---------------------|----------|--------------------|----------------------------|-------------------------------------| | 11/10/92 | | 6 | Y | UN1935 | Reclaimation/RFE
Industries Inc. | | | CYANIDE
SOLUTION | | | | | | | | | | · | | | - | • | , | | | | | | | | | | | | • | . · | | | | | | | - | | | | | ^{**} Attach USEPA Toxic Chemical Release Inventory Reporting Form R in July SMR as required in Section XV, Part 6 of Permit #36 # State st New Jersey Department of Environmental Protection Division of Hazardous Waste Management Manifest Section CN 028, Trenton, NJ 08625 se on elite (12-pitch) typewriter.) Form Approved. OMB No. 2050-0039. Expires 9-30-9: | | .,, | | THE IN BIOCK ISSUED (FORM designed | 1 Constant (12-ph.c. | | 14- | | 2 0000 1 | i interme | | ibo epagas are | | |--------------|----------|--------------|---|------------------------------------|--|----------------------|---|-------------------------|---------------------------------|----------------|---------------------------------------|----------------| | | | | IFORM HAZARDOUS
WASTE MANIFEST | 1. Generator's US E
필인 마일 13 12 | | Ban. | nifest
nent No. | 2. Page 1 | is not
law. | requii | the snaded are |)85
ra: | | | 3. | Gener | ator's Name and Mailing Address | | Perplating | Tac. | | A. State A | lanifest Docu | | | • | | | | | - | UL CELL DE | | , | | B. State C | ienerator's ID | | 5900 | | | | 4. | Gener | ator's Phone (313) 22.54. | oraduus
Taa | E, XI 130 | يد والت | • | SAM | | - | | | | | | | porter 1 Company Name | 6. | US EPA | D Number | | | | <u>`</u> | | · . | | | | | ndustries, Inc. | N N | <u> 15 15 15 15 15 15 15 15</u> | | 2 ; | | rans. ID: | | unna | | | | 7. | Transp | porter 2 Company Name - | 8. | US EPA | D Number | | D. Transp
E. State T | | C01 | 451-0229 | | | | 9 | Design | lated Facility Name and Site Address | 10. | US EPA | ID Numper | | L. Otato i | Taris. ID | | | <u> </u> | | | | | navedoless, ime
Si Jersen Avenue | | ٠ | | | F. Transpo | rter's Phone | (, 🔧) | | | | | | | , Cisy, as 07302 | • | | | . • | G. State F | | | me . | | | | | | | Ai J | | <u> 5 12 15 15 1</u> | 12. Cont | | 's Phone (' <u>^</u>):
13. | 31) <u>4</u> | 51-000 | | | | 11. | US DO
HM | T Description (Including Proper Sha | pping Name, Hazard Cla | ass, and ID Numbe | r) . | No. | | Total
Quantity | Unit
Wt/Vol | Waste No. | | | G | a. | | ad, Wasta Caraci | . sulmiton. Ri | o.s. Potso | N B | | | | | | • | | N | | خد | er K | | 1935 (0003 | | TPS 1 | و مسالم | COEK | 2 | 3 10 10 F | 7 | | R | b. | | | | | | | | | | | | | 7 | | | RELIEVA A PER A COMA PRESENTA | antawaan. Ta | ≲. 3.2.3. | | | A | | 4 | • | | | R | c. | | RC, WARTE OFATELY
Programme Transfer | | | K | 10 4 | 100 | <u> </u> | 33 | 2 0 0 | t. | | | ٥. | _ | ac was a stancing | edidiinda, a. | J.J. 2518 | UN BO | | | | | | - | | | | | 11. kg05 (1000TT | | • | e | الماسو | | DOFE | | 9 0 0 | | | | d. | | | | | | | | | | | | | | ĺ | | | | | | | | | | i i i i i i i i i i i i i i i i i i i | • • • | | | | | nal Descriptions for Materials Listed | | i
Alexandria e matematica | | <u> </u> | K. Handli | ng Codes for | Wastes L | isted Above | 25 | | | | | , 6% Neur 0-6-1.0% A | | OZ NaOY O- | | | | | | | | | | a. | -71. | 41 Water T.A.L. (D | 903) 31-31.44 | Water T | • K • L • (1 | (| a. I | 0 4 | c. | F 0 4 | <u>٠</u> ٠٠, | | | | | , 6% NaSH, U-6-1.2% | | | | | 70 | 1 014 | | | | | | 15. | Specia | Andling instructions and Addition | al Information | | | · · · | ₽. ♣ | | 10. | <u> </u> | | | | 023
3 | ANID | E GERRING MATERIAL C | ONTAINS PRECI | CUS HETALS | FOR R | | | | | RCH, 4010ಕ | , · : - | | | 4:00 | erge
Y.S. | ney di don-Fri 7:30
Dichosel Cates: 1 | am/0100pm, Ar
Ir,11b 5 11c - | a debar Tl. | | | | i) boil | 559u | | | | | | | RATOR'S CERTIFICATION: I hereby | | ts of this consignm | | | urately desc | |)v | | 1, | | | | proper | shipping name and are classified, pring to applicable international and n | icked, marked, and labe | led, and are in all r | | | | | | | | | | | If I am a | a large quantity generator,1 certify th
nically practicable and that I have sele | at I have a program in pla | ice to reduce the vo | iume and to | xicity of w | aste genera | ted to the deg | ree I have | e determined to t | oe
od | | | | future t | hreat to human health and the enviror it waste management method that is | ment: OR, if I am a small | quantity generator. | I have made | a good ta | ith effort to | minimize my v | vaste ger | neration and sele | ct | | | | 1 / | /Typed Name | 7 | Signature | 11/1 | 1 | | | | Month Day | ear | | <u> </u> | <u> </u> | | red Ballamare | | Licha | NEXX | rele | SE DAZ | <u> </u> | 1 | 1111019 | 12 | | H | | | orter 1 Acknowledgement of Receip //Typed Name | t of Materials | Signature | | | | | | Month Day Y | rear | | ANSP | 0 | 1 | CHUI HILD | | ~~ | بعر الموكوش | إرأ الر | ر کمین س | تأوسا | į. | | 1 | | 01 | 18. | Transp | orter 2 Acknowledgement of Receip | t of Materials | | (è | | | | | | | | RTE | | Printed | /Typed Name | • | Signature | | | | • | | Month Day Y | ear | | | 19. | Discre | pancy Indication Space | | | | | | | | | <u> </u> | | F | | *** | | | | | | | | | | ; | | ĉ | | | | | | | | | * | | | | | + | 20 | Carrie | 0 | | | | | | 10 | | | | | Ť | | <u>`</u> | Owner or Operator: Certification of
VTyped Name | receipt of hazardous ma | Signature | this manife | at axcept | as netted in | item 19. | | Month Day) | /ear | | - | • | • | | | - Constitution | 2 | المسلم .
المهار | سندهایته سد تا ۷ | | | wonth Day 7 | _ | 红色工作法 机 | H CHROME | ription | Calibration | Results
(Including Drift) | Signature and Title of
Representative | | | |----------|---------|-------------|------------------------------|---|--|--| | | | 11/2/92 | 7=6.9 4-10=3.9-9.8 | Rodney Campbell Environmental Coordinato | | | | N-1 | | 11/2/92 | 7=6.7 4-10=3.8-9.7 | Rodney Campbell
Environmental Coordinato | | | | N-2 | | 11/2/92 | 7=6.8 4-10=3.9-9.8 | Rodney Campbell
Environmental Coordinato | | | | FINAL | | 11/2/92 | 7=7.0 4-10=3.9-9.9 | Rodney Campbell
Environmental Coordinato | , | | | | | | | | | | | | | ## GSP #### GENERAL SUPER PLATING CO., INC. 5762 CELI DRIVE EAST SYRACUSE, NEW YORK 13057 (315)
446-2264 FAX (315) 446-4419 July 30, 1996 Ms. Sandy Tuori-Bell County of Onondaga Department of Drainage and Sanitation 650 Hiawatha Boulevard West Syracuse, New York 13204-1194 Re: Semi-Annual Self-Monitoring Report General Super Plating Co., Inc. Wastewater Discharge Permit #36 5762 Celi Drive Dear Ms. Tuori-Bell: Enclosed please find a completed Self-Monitoring Report (and Semi-Annual Report) for the month of June, 1996 for our General Super Plating Company, Inc. facility located at 5762 Celi Drive, East Syracuse, New York. As required by the Onondaga County Department of Drainage and Sanitation, the completed report consists of the following items: - Form A: Analytical Data for Sewer #2 - Form B1: Toxic Organic Monitoring for Sewer #1 - Form B2: Toxic Organic Monitoring for Sewer #2 (*) - Form C1: Water Use Data for Sewer #1 - Form C2: Water Use Data for Sewer #2, and Maximum Daily Flow Rates for Sewer #2 - Form E: Waste Manifest Disposal Summary (with accompanying manifests) - Form F: Equipment Calibration Summary - Form G: pH Monitoring July 30, 1996 Ms. Sandy Tuori-Bell OCDDS RE: Semi-annual Self Monitoring Report 5762 Celi Drive Wastewater Discharge Permit #36 - Attachment 1: Quarterly Laboratory Analysis Reports for sampling dates June 12 - 14, 1996 and June 25 - 28, 1996; Semi-annual Laboratory Analysis Reports for sampling dates June 12, 1996 from Upstate Laboratories, Inc. - ♦ Attachment 2: Quarterly Certified Equipment Calibration Summary If you have any questions or comments regarding these attachments, please contact me at 446-2264. Sincerely, William W. Southwell Vice President, General Manager # General Super Plating (IC #29) Self Monitoring Report Form A | Period Covered: June 1, 1996 to Ju | ne 30, 1996 | | |---|--|---| | Date Due: July 30, 1996 | Date Submitted: | July 30, 1996 | | Explain Sampling and Preservation Meth | odologies: | | | See Discharge Monitoring Report (| SMR) | | | , and the same of | , | | | | | | | | ` | | | | | | | Water Usage During Reporting Period (ga | allons): | 2,442,146 | | Source(s): <u>Water me</u> | | | | Water Consumed but not Discharged to t | | | | Boiler Make-Up:52.3 | 80 Evapo | oration: | | | | | | Other (specify):Sa | nitary Sewer (#1) 139,4 | 16 | | Total Wastewater Discharged : | | 2,179,749 (SEWER #2) | | Number of Operating Days: | 30 | Number of Employees: 120 | | Do the Monitoring Results Show Full Cor | npliance (Y/N): | Y | | (If No, attach additional sheets for | r explanation. Refer to s | Section XV.B.10) | | direction or supervision in accordate gather and evaluate the information system, or those persons directly to the best of my knowledge and significant penalties for submitting knowing violations. I further certical collection of data required for this States Environmental Protection | on submitted. Based of responsible for gathering of belief, true, accurated false information, including that sampling and assubmission conform to Agency (USEPA) and/og control discharge plandon | and its attachments were prepared under my med to assure that qualified personnel properly on my inquiry of the persons who manage the g the information, the information submitted is and complete. I am aware that there are ding the possibility of fine and imprisonment for analytical methodologies employed during the accepted methods established by the United or the New York State Department of Health that was formally approved by the county, has | | Signature of Authorized Representative: | Vice Brook | Sent / General Manager | | | Form | B1: Analyt | ical Data Se | wer #1 ⁷ | | | |-------------------------|--------------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|---------| | Parameter | Effluent
Limit ⁸ | Sample
Type ⁹ | Day 1:
Date
6/25/96 | Day 2:
Date
6/26/96 | Day 3:
Date
6/27/96 | Average | | Cd (mg/l) | 2.0 | C | | | | | | Cr (mg/l) | 8.0 | С | 0.16 | 0.18 | 0.13 | 0.16 | | Hex-Cr (mg/l) | 4.0 | С | | | | | | Cu (mg/l) | 5.0 | С | | | | | | T-CN (mg/l) | 3.0 | G Ç | <0.01 | <0.01 | <0.01 | <0.01 | | CN-A (mg/l) | *** | G | <0.01 | <0.01 | <0.01 | <0.01 | | Pb (mg/l) | 1.0 | Ç | <0.1 | <0.1 | <0.1 | <0.1 | | Ni (mg/l) | 5.0 | С | 0.08 | 0.04 | 0.04 | 0.05 | | Ag (mg/l) | 1.0 | C | | | | | | Zn (mg/l) | 5.0 | C | 0.15 | 0.09 | 0.07 | 0.1 | | Hg (µg/l) | 20 | C | | | | | | Mo (mg/l) | *** | С | <0.01 | <0.01 | <0.01 | <0.01 | | BOD ₅ (mg/l) | | C C | 19 | 36 | 19 | 24.7 | | TSS (mg/l) | *** | С | 16 | 24 | 7.5 | 15.8 | | TP (mg/l) | | C | 1.9 | 1.9 | 1.7 | 1.8 | | TKN (mg/l) | *** | C | 28 | 25 | 37 | 30 | | O & G (mg/l) | 150 | G | .9 | 12 | 18 | 13 | | Phenols (mg/l) | 4.5 | G | | | | | | Flashpoint | 140 °F | G | , | · | | | | pH (S.U.) | 5.5-9.5 | G | | | 的 | | | pH (S.U.) | 5.5-9.5 | CONT | 7 | Attach pH Reco | rder Charts | | | TTOs ¹⁰ | *** | Ç. G | | | | | | Flowrate | *** | CONT | | | | | | | The Fo | ollowing Lines | Are For OCDDS | Use Only | | | | OCDDS Gr | ab Sample Numl | ber | | | | | | OCDDS Comp | oosite Sample Nu | ımber | | | | | | | ENCO | | | | | | | Acce | ptance Code | | | | | | Attach official laboratory reports and chain of custody records, and copies continuous recording flow and pH charts. ⁸ The symbol *** indicates that there is no applicable limit for this parameter. ⁹ C - Composite Sample, G - Grab Sample, CONT - Continuous Recording TTOs are defined as the sum of the detectable concentrations of the parameters listed in Section XV of this permit. | | Form B2: | Analytical D | ata – Sewer #2 | *11 ULI | | | |----------------------------|----------------------------------|--------------------
--|---------------------------------------|---------------------------|---------| | Parameter | Effluent
Limit ^{*12} | Sample
Type *13 | Day 1:
Date
6/12/96 | Day 2:
Date
6/13/96 | Day 3:
Date
6/14/96 | Average | | Cd (mg/l) | 1.2 | С | <0.005 | <0.005 | <0.005 | <0.005 | | Cr (mg/l) | 7.0 | С | 0.039 | 0.093 | 0.18 | 0.104 | | Hex-Cr (mg/l) | **** | C | 0.04 | 0.09 | 0.2 | 0.11 | | Cu (mg/l) | 4.5 | С | 0.11 | 0.11 | 0.07 | 0.1 | | T-CN (mg/l) | 1.9 | G | <0.01 | <0.01 | <0.01 | <0.01 | | CN-A (mg/l) | *** | G | <0.01 | <0.01 | <0.01 | <0.01 | | Pb (mg/l) | .6 | C | <0.1 | <0.1 | <0.1 | <0.1 | | Ni (mg/l) | 4.1 | С | 0.73 | 0.81 | 0.48 | 0.67 | | Ag (mg/l) | 1.2 | С | <0.05 | <0.05 | <0.05 | <0.05 | | Zn (mg/l) | 4.2 | С | 0.02 | <0.01 | 0.01 | <0.01 | | Hg (µg/l) | 20 | C | | | | | | Mo (mg/l) | *** | С | | | | | | Total Metals (mg/l) | 10.5 | C | 0.899 | 1.023 | 0.74 | 0.887 | | BOD ₅ (mg/l) | ** | С | | | | | | TSS (mg/l) | | , c | | | | | | TP (mg/l) | *** | С | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | | | TKN (mg/l) | | C | | | | | | O & G (mg/l) | 150 | G | <5.0 | | | | | Phenois (mg/l) | 4.5 | G. | <0.005 | | | | | Flashpoint (°F) | 140 | G. | >60degC | | | | | pH (S.U.) | 5.5-9.5 | G | 9.0 | 8.8 | 9.0 | 8.9 | | pH (S.U.) | 5.5-9.5 | CONT | - At | tach pH Reco | order Charts | | | TTOs ^{*14} (mg/l) | 2.13 | G | | | | | | Flowrate | *** | CONT | | | | | | | The Fol | lowing Lines | Are For OCDDS | S Use Only | | | | OCDDS Gra | ab Sample Num | nber | | | 9. 化数数形式 Y | | | OCDDS Comp | osite Sample N | lumber | | | | | | | ENCO | | | | | | | Acce | ptance Code | | And the second s | | | | ^{*11} Attach official laboratory reports and chain of custody records, and copies of continuous recording flow and pH charts. The symbol *** indicates that there is no applicable limit for this parameter. ^{*13} C - Composite Sample, G - Grab Sample, CONT - Continuous Recording ^{*14} TTOs are defined as the sum of the detectable concentrations of the parameters listed in Section XV of this permit. | | Form B2: | | ata - Sewer #2 | "11" GSP | • • • • • • • • • • • • • • • • • • • | | |----------------------------|--|--------------------|---------------------------|---------------------------|---------------------------------------|---------| | Parameter | Effluent
Limit *12 | Sample
Type *13 | Day 1:
Date
6/12/96 | Day 2:
Date
6/13/96 | Day 3:
Date
6/14/96 | Average | | Cd (mg/l) | 1.2 | С | 0.005 | 0.005 | 0.005 | 0.005 | | Cr (mg/l) | 7.0 | С | 0.01 | 0.01 | 0.11 | 0.04 | | Hex-Cr (mg/l) | i ka ka k ati katin
Kating Tidayi | C | | | | | | Cu (mg/l) | 4.5 | Ċ | 0.04 | 0.04 | 0.03 | 0.04 | | T-CN (mg/l) | 1.9 | G | <0.01 | <0.01 | <0.01 | <0.01 | | CN-A (mg/l) | *** | G | | | | | | Pb (mg/l) | .6 | C | <0.1 | <0.1 | <0.1 | <0.1 | | Ni (mg/l) | 4.1 | С | 0.39 | 0.38 | 0.22 | 0.33 | | Ag (mg/l) | 1.2 | C | 0.05 | 0.04 | 0.05 | 0.05 | | Zn (mg/l) | 4.2 | С | 0.03 | 0.04 | 0.05 | 0.04 | | Hg (µg/l) | 20 | C | | | | | | Mo (mg/l) | *** | С | | | | | | Total Metals (mg/l) | 10.5 | C | 0.47 | 0.47 | 0.41 | 0.45 | | BOD ₅ (mg/l) | *** | С | | | | | | TSS (mg/l) | | C | | | | | | TP (mg/l) | *** | C | | | | | | TKN (mg/l) | . San de la c omposition de la composition della dell | Ć | | | | | | O & G (mg/l) | 150 | G | | | · | | | Phenois (mg/l) | 4.5 | G | | | | | | Flashpoint (°F) | 140 | G | · | | | | | pH (S.U.) | 5.5-9.5 | G | 8.5 | 8.8 | 9.0 | 8.9 | | pH (S.U.) | 5.5-9.5 | CONT | At | tach pH Reco | rder Charts | | | TTOs ^{*14} (mg/l) | 2.13 | G | | | | | | Flowrate | *** | CONT | | | | | | | The Foll | lowing Lines | Are For OCDDS | S Use Only | | | | OCDDS Gra | ab Sample Num | nber | | | | | | OCDDS Comp | osite Sample N | lumber | | | | | | | ENCO | | | | | | | Acce | ptance Code | | | | | | ^{*11} Attach official laboratory reports and chain of custody records, and copies of continuous recording flow and pH charts. ^{*12} The symbol *** indicates that there is no applicable limit for this parameter. ^{*13} C - Composite Sample, G - Grab Sample, CONT - Continuous Recording ^{*14} TTOs are defined as the sum of the detectable concentrations of the parameters listed in Section XV of this permit. | | Form B2: | Analytical D | ata Sewer #2 | "11" ULI | · · · · · · · · · · · · · · · · · · · | | |----------------------------|-------------------------|--------------------|---------------------------|---------------------------|---------------------------------------|---------| | Parameter | Effluent
Limit *12 | Sample
Type *13 | Day 1:
Date
6/25/96 | Day 2:
Date
6/26/96 | Day 3:
Date
6/27/96 | Average | | Cd (mg/l) | 1.2 | C | <0.005 | <0.005 | <0.005 | <0.005 | | Cr (mg/l) | 7.0 | С | 0.32 | 0.05 | 0.1 | 0.16 | | Hex-Cr (mg/l) | Japan (••• •) (1 °°) | C | 0.22 | 0.03 | 0.06 | 0.1 | | Cu (mg/l) | 4.5 | С | 0.04 | 0.06 | 0.11 | 0.07 | | T-CN (mg/l) | 1.9 | G | <0.01 | 0.02 | 0.01 | <0.01 | | CN-A (mg/l) | *** | G | <0.01 | <0.01 | <0.01 | <0.01 | | Pb (mg/l) | .6 | C | <0.1 | <0.1 | <0.1 | <0.1 | | Ni (mg/l) | 4.1 | С | 0.78 | 1.1 | 1.6 | 1.16 | | Ag (mg/l) | 1.2 | C | 0.12 | <0.05 | <0.05 | <0.07 | | Zn (mg/l) | 4.2 | С | 0.04 | 0.03 | 0.05 | 0.04 | | Hg (µg/l) | 20 | С | | | | | | Mo (mg/l) | *** | С | | | | | | Total Metals (mg/l) | 10.5 | C | 1.18 | 1.24 | 1.86 | 1.43 | | BOD ₅ (mg/l) | *** | С | | | | | | TSS (mg/l) | *** | C | | | | | | TP (mg/l) | *** | С | | | | | | TKN (mg/l) | *** | C | | | | | | O & G (mg/l) | 150 | G | | | | | | Phenols (mg/l) | 4.5 | G | | | | | | Flashpoint (°F) | 140 | G | | | | | | pH (S.U.) | 5.5-9.5 | G | 7.9 | 8.4 | 8.0 | 8.1 | | pH (S.U.) | 5.5-9.5 | CONT | At | tach pH Reco | order Charts | | | TTOs ^{*14} (mg/l) | 2.13 | G | | | | | | Flowrate | *** | CONT | | | | | | | | | Are For OCDDS | S Use Only | | | | OCDDS Gr | ab Sample Nun | nber | | | | | |
OCDDS Comp | osite Sample N | lumber | | | | | | | ENCO | | | | | | | Acce | ptance Code | | | | | | ^{*11} Attach official laboratory reports and chain of custody records, and copies of continuous recording flow and pH charts. ^{*12} The symbol *** indicates that there is no applicable limit for this parameter. ^{*13} C - Composite Sample, G - Grab Sample, CONT - Continuous Recording ^{*14} TTOs are defined as the sum of the detectable concentrations of the parameters listed in Section XV of this permit. | | Form B2: | Analytical Da | ita - Sewer #2 | "11 GSF | • | | |----------------------------|-----------------------|--------------------|---------------------------|--|---------------------------|---------| | Parameter | Effluent
Limit *12 | Sample
Type *13 | Day 1:
Date
6/25/96 | Day 2:
Date
6/26/96 | Day 3:
Date
6/27/96 | Average | | Cd (mg/l) | 1.2 | C | 0.005 | 0.004 | 0.005 | 0.005 | | Cr (mg/l) | 7.0 | С | 0.15 | 0.01 | 0.01 | 0.06 | | Hex-Cr (mg/l) | *** | C | | | | | | Cu (mg/l) | 4.5 | С | 0.02 | 0.02 | 0.03 | 0.02 | | T-CN (mg/l) | 1.9 | G | <0.01 | <0.01 | <0.01 | <0.01 | | CN-A (mg/l) | *** | G | | | | | | Pb (mg/l) | : .6 (). | A C | <0.1 | <0.1 | <0.1 | <0.1 | | Ni (mg/l) | 4.1 | С | 0.42 | 1.45 | 1.69 | 1.19 | | Ag (mg/l) | 1.2 | C | 0.05 | 0.05 | 0.05 | 0.05 | | Zn (mg/l) | 4.2 | С | 0.06 | 0.03 | 0.03 | 0.04 | | Hg (µg/l) | 20 | C | | | | | | Mo (mg/l) | *** | С | | <u>, </u> | | | | Total Metals (mg/l) | 10.5 | C | 0.65 | 1.51 | 1.76 | 1.31 | | BOD ₅ (mg/l) | *** | С | | | , | | | TSS (mg/l) | | С | | | | | | TP (mg/l) | *** | С | | | | | | TKN (mg/l) | | C | | | | | | O & G (mg/l) | 150 | G | | | | | | Phenois (mg/l) | 4.5 | G | | | | | | Flashpoint (°F) | 140 | G | | | | | | pH (S.U.) | 5.5-9.5 | G | 8.5 | 8.9 | 8.3 | 8.6 | | pH (S.U.) | 5.5-9.5 | CONT | At | tach pH Rec | order Charts | | | TTOs ^{*14} (mg/l) | 2.13 | G | | | | | | Flowrate | *** | CONT | | | | | | · | The Fol | lowing Lines | Are For OCDDS | Use Only | | | | OCDDS Gra | ab Sample Nun | nber | | | | | | OCDDS Comp | osite Sample N | lumber | | · · · · · · · · · · · · · · · · · · · | | | | | ENCO | | | Tall the gradual | | | | Acce | ptance Code | | | | | | ^{*11} Attach official laboratory reports and chain of custody records, and copies of continuous recording flow and pH charts. ^{*12} The symbol *** indicates that there is no applicable limit for this parameter. ^{*13} C - Composite Sample, G - Grab Sample, CONT - Continuous Recording ^{*14} TTOs are defined as the sum of the detectable concentrations of the parameters listed in Section XV of this permit. | Date | Wastewater Discharged
(gal) | Number of
Production Hours | Average Flowrate (gpm) | |------|--------------------------------|-------------------------------|------------------------| | | 4671 | 24 | 3.2 | | 2 | 5421 | 24 | 3.8 | | 3 | 4195 | 24 | 2.9 | | Forr | n C2: Water Use I | Data for the Mont | th of JUNE for S | ewer #2 | |-------|---|----------------------------------|---------------------------|------------------------| | Date | Wastewater
Discharged
Daily (gpd) | Number of
Production
Hours | Maximum
Flowrate (gpm) | Average Flowrate (gpm) | | 1,000 | 67865 | 24.0 | 75.2 | 47.1 | | 2 | 58848 | 22.5 | 56.0 | 43.6 | | 3 | 55904 | 23.0 | 60.8 | 40.5 | | 4 | 78525 | 24.0 | 80.0 | 54.5 | | 5 | 84007 | 23.0 | 83.2 | 60.9 | | 6 | 83053 | 23.0 | 83.2 | 60.2 | | 7 | 81795 | 23.5 | 76.8 | 58.0 | | 8 | 70355 | 23.0 | 78.4 | 51.0 | | 9 | 41335 | 23.5 | 48.0 | 29.3 | | 10 | 51695 | 23.0 | 80.0 | 37.5 | | 1 | 72058 | 23.0 | 67. 2 | 52.2 | | 12 | 79702 | 23.5 | 83.2 | 56.5 | | 13 | 85726 | 23.0 | 76.8 | 62.1 | | 14 | 90954 | 23.5 | 76.8 | 64.5 | | 15 | 64617 | 23.0 | 76.8 | 46.8 | | 16 | 64617 | 22.0 | 56.0 | 49.0 | | 17 | 73236 | 24.0 | 80.0 | 50.9 | | 18 | 90606 | 24.0 | 80.0 | 62.9 | | 19 | 95131 | 24.0 | 91.2 | 66.1 | | 20 | 95098 | 24.0 | 76.8 | 66.0 | | 21 | 90420 | 24.0 | 84.8 | 62.8 | | 22 | 86740 | 23.5 | 72.0 | 61.5 | | 23 | 44666 | 21.5 | 68.8 | 34.6 | | 24 | 71839 | 24.0 | 88.0 | 50.0 | | 25 | 89877 | 23.0 | 83.2 | 65.1 | | 26 | 92419 | 23.5 | 86.4 | 65.6 | | 27 | 86774 | 23.5 | 80.0 | 61.5 | | 28 | 73399 | 23.5 | 75.2 | 52.1 | | 29 | 53557 | 23.0 | 56.0 | 42.2 | | 30 | 62234 | 23.0 | 49.6 | 43.6 | | 31 | | | | | | | Monthly | Average | | 53.3 | | | | Form D: B | atch Discharge Summary | | |------|----------|-----------|------------------------|-----------| | Date | Contents | Quantity | Discharge Procedures | Signature | | None | Date | 6/6/96 | 6/27/96 | | |--|---|-----------------------|--| | Waste Material | Electroplating sludge | Electroplating sludge | | | Quantity | 26 CY | 26 CY | | | Hazardous (Y/N) | Y | Y | | | USEPA/NYSDEC Classification | F006 | F006 | | | Method of Disposal and Carrier | Delisting
Delvecchio
Trans. & Mati. | Delisting | | | Facility's Hazardous
Waste Generator
I.D. Number | NYD982721656 | NYD982721656 | | | How Created (if non-
hazardous) | | | | This form is to be utilized for materials that are removed or separated from the permittee's wastewater effluent and disposed of in a manner other than the sanitary sewer system. #### Bureau of Waste Management P. O. Box 8550 P. O. Box 8550 Harrisburg, PA 17105-8550 OFFICIAL PENNSYLVANIA MANIFEST FORM Form approved. OMB No. 2050-0039 Expires 9-30-94 | 4 | UNIFORM HAZARDOUS 1. Generator's US EPA | | Manifest
Document No. | 2. Page | | ion in the s
quired by F | haded areas
ederal law | |---|---|--|--------------------------|---|---------------------------------------|-----------------------------|---------------------------| | | WASTE MANIFEST 1 Y D y D 2 7 3. Generator's Name and Mailing Address | 1000 | 0007 | i. | | quired by S | | | | 3. Generator's Name and Mailing Address | | | A. State Manifest Document Number PAE 3409943 | | | | | | Divisional brive, EAST STRACUSE, N. F. 11 | 3v57 | | B. State (| ~ | | | | | 4. Generator's Phone (زير) عنوناند | | | MYS | 98272163 | Sú | | | | | 6. US EPA ID Num | ber | C. State 1 | | | • | | | 7. Transporter 2 Company Name | 9 3 7 3 3 | <u> </u> | PA- | la al | <u> </u> | 3 3 | | | 7. Transporter 2 Company Name | 8. US EPA ID Num | ber | E. State T | orter's Phone | (/1/)3 | 343-2330 | | | 9. Designated Facility Name and Site Address | 10. US EPA ID Nui | nber | PA- | | ; | | | and PROGRESSIVE COMPANY (RESOURCED Facility) F. Transporter's Phone () | | | | | () | · | | | | All ut Erri, 2015, 301 5353 | | | | acility's ID | | | | | Accessing, 2a. 17331 19'A 0 | 9 5 1 5 3 | | | /'s Phone (7 į | | | | | 11. US DOT Description (Including Proper Shipping Name, Hazard Class, | and ID Number) | 12. Contai | | 13.
Total | 14.
Unit | I.
Waste No. | | | a | | No. | Туре | Quantity | Wt/Vol | | | | ing luinkhed masii, solid M.O.S., Ha 307 | t_{I} | | | | | | | | 21 11 (1906) Class 9 | | 026 | OA C | 1002 | 6 Y | 7006 | | G
E | b. | | | | | | | | NE | , | | | | | , | | | RA | C. | | | | | | <u> </u> | | T | | | | | | | | | OR | | | | | | | | | | d. | | | | | | · | | | · · · · · | ٠., | | | | | | | | J. Additional Descriptions for Materials Listed Above | | | K. Handlin | g Codes for W | /astes Liste | d Above | | | Lab Pack Physical State Lab Pack | Physical State | | T23/T5 | _ | | | | | a | <u> </u> | The second of the second | _ | - | c | <u> </u> | | | b. d. | | • • | _ | | | | | 1 | 15. Special Handling Instructions and Additional Information | | | b. | 1 | d. | | | | alu alu lalug doba - k | | | | | | į | | | Line is more contacting (Die) 4-15-124 | | | | | | | | | | | | | | | | | | فالمتناق وتنجافاه والهجاء وتعادل الماسان الماسان | | | | | | | | | 16. GENERATOR'S CERTIFICATION: I hereby declare that the conte | | | urately descri | bed above by p | roper shippii | ng name and are | | | classified, packed, marked, and labeled and are in all respects in proper condition | on for transport by high | way according to app | olicable intern | ational and natio | nal governm | ent regulations. | | 1 : | If i âm a large quantity generator, I certify that I have a program in place to re | educe the volume and | toxicity of waste gen | erated to the | degree ! have d | etermined to | be economically | | 1 1 | practicable and that thave selected the practicable method of freatment, storage and the environment 'OR, if I am a small quantity generator I have made a go available to me and that it can afford. | pe, or disposal currently
ood faith effort to minir | nize my waste genera | ation and sele | the present and
ect the best waste | e manageme | nt method that is | | | Printed/Typed Name | Signature | <u> </u> | | | MONTH | DAY YEAR | | <u>V</u> | 7. Transporter 1 Acknowledgement of Acceigt of Materials | 3.70 | 3000 | | | 36 | 0696 | | | Printed/Typed Name | Signature | 13 1 | - | | MONTH | DAY YEAR | | S . | Chester Sob he si | Chist | - Jal - L | <u>,</u> | | 166 | 0696 | | Q : | 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name | Signature | | | | MONTH | DAY YEAR | | E : | | | | | | 1 1 | | | F | 19. Discrepancy Indication Space | | | | | | j | | A | 19. Discrepancy Indication Space ACTUAL WT OMITTED | | 1 11 | | | | į | | Ī | ACTUAL WT. FOR WRC RECORDS 48,663 -M | | | | | | | |
֓֞֞֞֝֞֝֞֝֞֝֞֝֞֝֓֓֓֓֓֡֡֡֝֡֓֓֓֡֡֡֡֡֡֡֝ | Facility Owner or Operator: Certification of receipt of hazardous mal
Printed/Typed Name | terials covered by the Signature | is manifest excep | as noted in | ı item 19. | | 044 4510 | | Y | | | mn = 0 f | | | MONTH | | | | STOVE MISLAW | I Allera | milhae | <u> بن</u> | | 0/4 | لعكتلك | . ! ## P. O. Box 8550 Harrisburg, PA 17105-8550 OFFICIAL PENNSYLVANIA MANIFEST FORM OMB No. 2050-0039 Expires 9-30-94 | UNIFORM HAZARDOUS 1. Generator's US EPA ID No. WASTE MANIFEST 1. C 2 3 3 2 7 2 1 6 | , Docu | anifest
Iment No.
O_O_T | 2. Page
of | is not re | ition in the si
equired by Fo
equired by Si | derai law | |--|--------------------------|-------------------------------|--|----------------------|---|--------------------| | 3. Generator's Name and Mailing Address | | | , | Manifest Doc | | · | | iminama super lating co., inc. | | | | PAE 3 | 4033 | 134 | | Sind dank drive, East Stracuse, M.T. 13057 | | | , | Gen. ID
5 9827216 | .56 | | | . Generator's Phone (3 த ்) ஆக்கு ஆக்கு இருந்தின் கூறு இது இது இது இது இது இது இது இது இது இத | EPA ID Number | | | Trans. ID | 90 | | | 1 | | | PA | | 1 . 2 . | 2.1 | | Fransporter 2 Company Name 8. US | EPA ID Number | 2, i i | | sporter's Phone | • (717) s | 43-1350 | | | | | | Trans. ID | ,,,, | 43 2330 | | | EPA ID Number | | (PA- | · 1 1 | | 1 | | And Persusulation don Pany (superdisper Products) | , | · | F. Trans | sporter's Phone | () | | | ം പാർ ചെന്നു. <i>2018</i> 5, 362-3553 | | | | Facility's ID | | • | | 22.2 Walle, Pa. 4/304 / PAJ 9 6 | 1 9 3 3 | 1 1 | | ity's Phone (7 | | -4747 | | US DOT Description (Including Proper Shipping Name, Hazard Class, and ID | Number) | 12. Contair | 1 | 13.
Total | 14.
Unit | l.
Waste No | | | | No. | Туре | Quantity | Wt/Voi | | | we wanteduced landite, solled history an 1977 | | | ļ | | | • | | 25 LLL (2006) CLASS 9 | 1 | - 2 / | aal | A A A A | | 300 | | | | 020 | D 71 | 0002 | SIZ. | 200 e | | | | | 1 | | | 1 | | | . | | į | | · · | , | | | | | | | - 1 - 1 | | | | | | 1 | • | | | | | | | 1 | • | | | | | | | | | | • | | | | | į | | , , | | | | | | | | | | | Additional Descriptions for Materials Listed Above Lab Pack Physical State Lab Pack Physic | al State | . | K. Hand | ling Codes for | Wastes Lister | d Above | | | 1 | ŀ | | 59/T50 | | | | | | | a-TI3 | Drying | <u>c</u> | · | | | . 1 | | b. | | d. | | | Special Handling Instructions and Additional Information | | | <u>. </u> | |] u. | | | | | | | | | | | - 11 manualne ddia - 3
manachidi contact (313) - 40-4104 | | | • | | • | | | The manufacture of the state | | | | | | | | and a trace our act water graduly confuded a Charletticate is | 1-300-4 4- | - 33:50 | | | | | | | KESPUMBS A | | | • | | | | 16. GENERATOR'S CERTIFICATION: I hereby declare that the contents of the classified, packed, marked, and labeled and are in all respects in proper condition for training. | nis consignment are to | fully and accu | rately des | cribed above by | proper shippin | g name and are | | onesomed, packed, marked, and rabeled and are in an respects in proper condition for trail | maport by illigitway act | Joining to app | auto iiile | ananonal anu lidi | Jonar governine | , cyalations. | | If I am a large quantity generator, I certify that I have a program in place to reduce the practicable and that I have selected the practicable method of treatment, storage, or dis | e volume and toxicity | of waste gen | erated to ti | ne degree I have | determined to | be economically | | and the environment: OR, if I am a small quantity generator. I have made a good faith available to me and that I can afford | effort to minimize my | waste genera | tion and se | elect the best was | ste managemen | it method that is | | Printed/Typed Name Signa | ture | ` . | | | MONTH | DAY YEAR | | A CALL COLOR OF TAX TO CHARLES ON THE COLOR OF THE CALL T | 1 1 | 11.00 | | | | . " / . | | 17 Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Signa | nture | | | | MONTH | DAY YEAR | | Gene Koca | Ka. | | | | 10 61 | 37174 | | 8. Transporter 2 Acknowledgement of Receipt of Materials | | | | | If-/ | | | Printed/Typed Name Signa | ture | | | | MONTH | DAY YEAR | | | | | | | | | | . Discrepancy Indication Space | U2 (| 170 = | | • | | | | | 110 | | E1 | | | | | which we was DRC. Keens | 5 | | 163 | 5 | | | | 20. Facility Owner or Operator: Certification of receipt of hazardous materials of | | ifest except | as noted | in Item 19. | | | | Printed/Typed Name Signal | ture | . \ | | 11 6 | MONTH | DAY YEAR | EPA Form 8700-22 (Rev. 9/88) Previous editions are obsolete | Form F: Equipment Calibration Summary | | | | | | | |---------------------------------------|------------------------|---------------------------------------|---|--|--|--| | Instrument
#/Description | Date of
Calibration | Results
(Including Drift) | Signature and
Title of
Representative | | | | | Chrome Treat pH | 6/13/96 | 7.03 - 7.00 3.85 - 4.00 | Env. Engineer | | | | | Chrome Treat pH | 6/21/96 | 7.01 - 7.00 3.95 - 4.00 | Env. Engineer | | | | | N - 1 pH | 6/13/96 | 6.98 - 7.00 3.91 - 4.00 | Env. Engineer | | | | | N - 1 pH | 6/21/96 | 7.09 - 7.00 4.06 - 4.00 | Env. Engineer | | | | | N - 2 pH | 6/13/96 | 6.7 - 7.0 10.0 - 10.0 | Env. Engineer | | | | | N - 2 pH | 6/21/96 | 6.9 - 7.0 10.1 - 10.0 | Env. Engineer | | | | | Final pH | 6/13/96 | -5.7 mV - 0.0 mV
-186.7 mV177.0 mV | کوم کی کی کی
Env. Engineer | | | | | Final pH | 6/21/96 | 10.0 mV - 0.0 mV
-190.1 mV177.0 mV | Sear Jacks ~
Env. Engineer | | | | | <u></u> | | | | | | | | | | 0.0 mV = 7.0 | | | | | | | | - 177.0 mV = 10.0 | | | | | | | | | | | | | | Form G: pH Excursions | | | | | | | | |-----------------------|------------------------|----------|--|--|--|--|--| | Date | pH
(Limit: 5.5-9.5) | Duration | Explanation for Excursion | | | | | | | | | None for sewer #2 | | | | | | 6/12/96 | 5.2 | <2 min | SEWER #1(Sanitary) | | | | | | | | | See Notification Letter dated June 17,
1996 | | | | | | | | | ٦ | , | ### Upstate Laboratories inc. Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209 Mailing: Box 289 • Syracuse, NY 13206 Buffalo (716) 662-2118 Rochester (716) 436-9070 Albany (518) 459-3134 Binghamton (607) 724-0478 June 28, 1996 Rochester (716) 436-9070 New Jersey (201) 703-1324 Mr. William Southwell Vice-President, General Mgr. General Super Plating Co., Inc. 5762 Celi Dr. E. Syracuse, NY 13057 Re: Analysis Report #16496111 - Semi-Annual Dear Mr. Southwell: Please find enclosed the results for your sample which was collected by ULI personnel on June 12, 1996. We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date. Should you have any questions, please feel free to give us a call. Thank you for your patronage. Sincerely, UPSTATE LABORATORIES, INC. Anthony J. Scala Director AJS/lw Enclosures: report, invoice cc/encs: N. Scala, ULI file Note: Faxed results were given to your office on 6/28/96. AJS Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent
of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. DATE: 06/28/96 Upstate Laboratories, Inc. Analysis Results Report Number: 16496111. Client I.D.: GENERAL SUPER PLATING, INC. Sampled by: ULI SEMI-ANNUAL SEWER 2 PRETREATMENT 1000H 06/12/96 G | I I.D.: 16496111 | Matrix: Water | | · | |---------------------------|---------------|------|-------| | ARAMETERS | RESULTS | KEY | FILE# | | Flash Point | >60degC | | WB334 | | Oil & Grease | <5mg/l | • | WB339 | | Total Phenols | <0.005mg/l | | WB334 | | EPA Method 601 | | | | | Dichlorodifluoromethane | <5ug/l | 01 | VA225 | | Chloromethane | <5ug/l | 01 | VA225 | | Vinyl Chloride | <5ug/l | 01 | VA225 | | Bromomethane | <5ug/1 | 01 | VA225 | | Chloroethane | <5ug/l | 01 | VA225 | | Trichlorofluoromethane | <5ug/l | 01 | VA225 | | 1,1-Dichloroethene | <5ug/l | 01 | VA225 | | Methylene Chloride | <25ug/l | 01 | VA225 | | cis-1,2-Dichloroethene | <5ug/l | 01 | VA225 | | trans-1,2-Dichloroethene | <5ug/l | 01 | VA225 | | 1,1-Dichloroethane | <5ug/l | 01 | VA225 | | Chloroform | 11ug/1 | | VA225 | | 1,1,1-Trichloroethane | <5ug/l | 01 | VA225 | | Carbon Tetrachloride | <5ug/1 | 01 | VA225 | | 1,2-Dichloroethane | <5ug/l | . 01 | VA225 | | Trichloroethene | <5ug/l | 01 | VA225 | | 1,2-Dichloropropane | <5ug/l | 01 | VA225 | | Bromodichloromethane | <5ug/l | 01. | VA225 | | 2-Chloroethylvinylether | <5ug/l | 01 | VA225 | | cis-1,3-Dichloropropene | <5ug/l | 01 | VA225 | | trans-1,3-Dichloropropene | <5ug/l | 01 | VA225 | | 1,1,2-Trichloroethane | <5ug/1 | 01 | VA225 | | Tetrachloroethene | <5ug/1 | 01 | VA225 | | Dibromochloromethane | <5ug/1 | 01 | VA225 | | Bromoform | <5ug/l | 01 | VA225 | | 1,1,2,2-Tetrachloroethane | <5ug/1 | 01 | VA225 | | Chlorobenzene | <5ug/1 | 01 | VA225 | | 1,2-Dichlorobenzene | <5ug/1 | 01 | VA225 | | 1,3-Dichlorobenzene | <5ug/l | 01 | VA225 | | 1,4-Dichlorobenzene | <5ug/1 | 01 | VA225 | | EPA Method 602 | • | | | | Benzene | <5ug/l | 01 | VA225 | | Toluene | <5ug/l | 01 | VA225 | | Ethylbenzene | <5ug/l | 01 | VA225 | | m-Xylene and p-Xylene | <5ug/l | 01 | VA225 | | o-Xylene | <5ug/1 | 01 | VA225 | DATE: 06/28/96 Upstate Laboratories, Inc. Analysis Results Report Number: 16496111 Client I.D.: GENERAL SUPER PLATING, INC. Sampled by: ULI SEMI-ANNUAL SEWER 2 PRETREATMENT 1000H 06/12/96 G APPROVAL: _ (| ULI | I.D.: | 16496111 | | Matrix: | Water | |-----|-------|----------|--|---------|-------| | | | | | | | | PARAMETERS | RESULTS | KEY | FILE# | |---------------------|---------|------|--------| | | | | | | Chlorobenzene | <5ug/l | 01 | VA2256 | | 1,2-Dichlorobenzene | <5ug/l | 01 | VA2256 | | 1,3-Dichlorobenzene | <5ug/l | . 01 | VA2256 | | 1,4-Dichlorobenzene | <5ug/1 | 01 | VA2256 | #### KEY PAGE - 1 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS - 2 MATRIX INTERFERENCE - 3 PRESENT IN BLANK - 4 ANALYSIS NOT PERFORMED BECAUSE OF INSUFFICIENT SAMPLE - 5 THE PRESENCE OF OTHER TARGET ANALYTE(S) PRECLUDES LOWER DETECTION LIMITS - 6 BLANK CORRECTED - 7 HEAD SPACE PRESENT IN SAMPLE - 8 QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE QUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL. - 9 THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID - 10. ADL (AVERAGE DETECTION LIMITS) - 11 PQL(PRACTICAL QUANTITATION LIMITS) - 12 SAMPLE ANALYZED OVER HOLDING TIME - 13 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM THE FILTERING PROCEDURE - 14 SAMPLED BY ULI - 15 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL; HOWEVER, THE VALUES ARE WITHIN EXPERIMENTAL ERROR - 16 AN INHIBITORY FACTOR WAS OBSERVED IN THIS ANALYSIS - 17 PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING - 18 DEPENDING UPON THE INTENDED USE OF THIS TEST RESULT, CONFIRMATION BY GC/MS OR DUAL COLUMN CHROMATOGRAPHY MAY BE REQUIRED - 19 CALCULATION BASED ON DRY WEIGHT - 20 INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE PRACTICAL QUANTITATION LIMITS - 21 UG/KG AS REC.D / UG/KG DRY WT - 22 MG/KG AS REC.D / MG/KG DRY WT - 23 INSUFFICIENT SAMPLE PRECLUDES LOWER DETECTION LIMITS - 24 SAMPLE DILUTED/BLANK CORRECTED - 25 ND (NON-DETECTED) - 26 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS/BLANK CORRECTED - 27 SPIKE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX INTERFERENCE - 28 POST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF THE CONTROL LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE PQL - 29 ANALYZED BY METHOD OF STANDARD ADDITIONS - 30 METHOD PERFORMANCE STUDY HAS NOT BEEN COMPLETED/ND (NON-DETECTED) - 31 FIELD MEASURED PARAMETER TAKEN BY CLIENT - 32 TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED - 33 NON-POTABLE WATER SOURCE - 34 THE QUALITY CONTROL RESULTS FOR THIS ANALYSIS INDICATE A POSITIVE BIAS OF 1-5 MG/L. THE POSITIVE BIAS FALLS BELOW THE PUBLISHED EPA REGULATORY DETECTION LIMIT OF 5 MG/L BUT ABOVE 1 MG/L. - 35 THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON PETROLEUM DISTILLATES - 36 MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY - 37 MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY - 38 MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINÉ (CL2) / POUNDS (LBS) PER DAY OF CL2 - 39 MICROGRAMS PER LITER (UG/L) / POUNDS (LBS) PER DAY - 40 MILLIGRAMS PER LITER (MG/L) LINEAR ALKYL SULFONATE (LAS) / POUNDS (LBS) PER DAY LAS - 41 RESULTS ARE REPORTED ON AN AS REC.D BASIS - 42 THE SAMPLE WAS ANALYZED ON A TOTAL BASIS; THE TEST RESULT CAN BE COMPARED TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20, CREATING A THEORETICAL TCLP VALUE - 43 METAL BY CONCENTRATION PROCEDURE - 44 POSSIBLE CONTAMINATION FROM FIELD/LABORATORY # Upstate Laboratories, Inc. 3034 Corporate Drive E. Syracuse New York 13057 ## Chain Of Custody Record 315) 437 0255 Fax 437 1209 lient: Project # / Project Name GENERAL SUPER PLATING SEMI-ANNUAL of lient Contact: Con-Phone # Location (city/state) Address Remarks JOHN JODOIN SYRACUSE, NY 446-2264 tain-ULI Internal Use Only Sample ID Date Matrix Grab or ers Time 1) 2) 3) 4) 5) 6) 7) 8) Comp. 9) 10) 1000 420 Х SEWER 2 PRETREATMENT **GRAB** Sampled by:(Print) parameter and method sample bottle: type size pres. Name of Courier (if used) KoiTh Williams 1) FLASHPOINT **PLASTIC** 250ml NONE Company: 2) 08G **GLASS** 320z H2S04 LILT **GLASS** H2S04 ●3) T-PHENOLS 32oz Relinquished by: (Signature) Date Received by: (Signature) 4) EPA 601/602 **GLASS** Time 40m I 1:1 HCL Relinquished by: (Signature) Date Time Received by: (Signature) 8) 9) Relinquished by: (Signature) emiT Rec'd for Lab by: (Signature) 10) Note: The numbered columns above cross reference with the numbered columns in the upper right hand corner. C nardek. # Upstate Laboratories inc. Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017. • (315) 437-0255. • Fax (315) 437-1209. Mailing: Box 289 • Syracuse, NY 13206 Albany (518) 459-3134 Binghamton (607) 724-0478 July 30, 1996 Buffalo (716) 649-2533 Rochester (716) 436-9070 New Jersey (201) 703-1324 Mr. William Southwell Vice-President, General Mgr. General Super Plating Co., Inc. 5762 Celi Dr. E. Syracuse, NY 13057 Re: Analysis Report #17796022 - Quarterly Dear Mr. Southwell: Please find enclosed the results for your samples which were collected by ULI personnel on June 25, 26, 27 and 28, 1996. We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date. Should you have any questions, please feel free to give us a call. Thank you for your patronage. Sincerely, UPSTATE LABORATORIES, INC. Anthony J. Scala Director AJS/lw Enclosures: report, field data, strip charts, invoice cc/encs: N. Scala, ULI file Note: Faxed results were given to your office on 7/29/96. AJS Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. # Upstate .aboratories inc. Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209 Mailing: Box 289 • Syracuse, NY 13206 Albany (518) 459-3134 Binghamton (607) 724-0478 Rochester (716) 436-9070 New Jersey (201) 703-1324 July 30, 1996 Buffalo (716) 649-2533 Mr. William Southwell Vice-President, General Mgr. General Super Plating Co., Inc. 5762 Celi Dr. E. Syracuse, NY 13057 Self-Monitoring Re: Dear Mr. Southwell: This letter is in response to a request from the Onondaga County Department of Drainage and Sanitation regarding sampling techniques used for your Self-Monitoring Compliance. Composite samples are collected using a microprocessor-controlled, peristaltic pump sampler programmed to collect a sample aliquot every thirty (30) minutes. At the completion of a sampling event, the composite is poured into appropriate preserved containers. samples for pH are collected in the field, done at the initial and ending sampling periods daily. If composite pH readings are required, they are done when received at the laboratory. The pH readings are accomplished using a two-point calibrated pH meter. Calibration occurs daily. Grab samples are collected using a glass jar lowered into the effluent sump. For oil and grease, a glass quart jar is retrieved and then preserved with sulfuric acid. Volatile TTO samples are collected with a separate glass container and then poured off into an appropriate headspace container. Upstate Laboratories, Inc. follows sampling guidelines set forth in "Standard Methods for the Examination of Water and Wastewater," as well as the EPA's
"Handbook for Sampling and Sample Preservation of Water and Wastewater." Should you have any questions regarding this matter, please feel free to call me. > Very truly yours, UPSTATE LABORATORIES, INC. Bryan F. SValentine Technical Services Manager BFV/lw ## ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE Upstate Laboratories, Inc. Analysis Results Report Number: 17796022 Client I.D.: GENERAL SUPER PLATING CO, INC. APPROVAL: Lab I.D.: 10170 | TD:17796022 | Mat:Water QUARTERLY DAY 10F3 | SEWER 2 PRETREATMENT 104 | 40-1040H 06/25/5 | 66°C | |-------------|------------------------------|-------------------------------------|------------------|------------| | PA | RAMETERS | RESULTS | KEY | FILE# | | | Flow | 88,710gal | | FIELD | | • | Hexavalent Chromium | 0.22mg/l | | WB3418 | | Total | Cadmium | < 0.005 mg/1 | • | MA6461 | | Total | Chromium by furnace method | 0.32 mg/1 | | MA6518 | | Total | Copper | 0.04mg/l | | MA6461 | | Total | Lead | <0.1mg/l | • | MA6461 | | Total | Nickel | 0.78mg/1 | | MA6461 | | Total | Silver | 0.12mg/l | | MA6461 | | Total | Zinc | 0.04 mg/l | • | MA6461 | | ĪD:17796023 | Mat:Water QUARTERLY DAY 10F3 | SEWER 2 PRETREATMENT 111 | L5H 06/25/96 G | | | PA | RAMETERS | RESULTS | KEY | FILE# | | | | | | | | | Field pH | 7.9SU | | FIELD | | | Amenable Cyanide | < 0.01mg/l | | WB3503 | | | Total Cyanide | <0.01mg/1 | | WB3503 | | ID:17796024 | RAMETERS | SEWER 1 SANITARY 1030-10
RESULTS | KEY | FILE# | | | | | | | | | BOD5 | 19mg/1 | | WB3424 | | | Total Kjeldahl Nitrogen | 28mg/1 | | WB3559 | | | Total Phosphorus | 1.9mg/1 | | WB3585 | | • | Total Suspended Solids | 16mg/1 | | WB3448 | | Total | Chromium by furnace method | 0.18mg/1 | | MA6518 | | Total | Lead | <0.1mg/1 | • | MA6461 | | Total | Molybdenum by furnace method | <0.01mg/1 | | MA6485 | | Total | Nickel | 0.08mg/1 | | MA6461 | | Total | Zinc | 0.15mg/l | | MA6461 | | ID:17796025 | Mat:Water QUARTERLY DAY 10F3 | SEWER 1 SANITARY 1100H 0 | 6/25/96 G | · - | | PA | RAMETERS | RESULTS | KEY | FILE# | | | Field pH | 7.680 | | FIELD | | | Amenable Cyanide | <0.01mg/1 | | WB3503 | | | Flash Point | >60degC | | WB3497 | | | Oil & Grease | 9mg/1 | • | WB3550 | | | Total Cyanide | <0.01mg/1 | | WB3503 | | | oleman | - 0 · 0 · 1 · 1 · 1 · 1 | | | ## ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE Upstate Laboratories, Inc. Analysis Results Report Number: 17796022 Client I.D.: GENERAL SUPER PLATING CO, INC. APPROVAL: Lab I.D.: 10170 | ID:17996011 Mat:Water QUARTERLY DAY 20F3 | SEWER 2 PRETREATMENT 1110 | 0-1105H 06/26/9 | 6 C | | |---|--|-----------------|--|--| | PARAMETERS | RESULTS | KEY | FILE# | | | Flow | 94,861gal | | FIELD | | | рH | 7.980 | 17 | WB2177 | | | Hexavalent Chromium | 0.03mg/l | - . | WB3441 | | | Total Cadmium | <0.005mg/l | • | MA6497 | | | Total Chromium by furnace method | 0.05mg/1 | | MA6497 | | | Total Copper | 0.06mg/1 | | MA6497 | | | Total Lead | <0.1mg/1 | , | MA6497 | | | Total Nickel | 1.1mg/l | •
• | MA6497 | | | Total Silver | <0.05mg/1 | | MA6497 | | | Total Zinc | 0.03mg/l | | MA6497 | | | ID:17996012 Mat:Water QUARTERLY DAY 20F3 | SEWER 2 PRETREATMENT 1110 | H 06/26/96 G | | | | PARAMETERS | RESULTS | KEY | FILE# | | | 73 1 3 - 77 | 8.4SU | · | | | | Field pH
Amenable Cyanide | <0.01mg/l | | FIELD
WB3594 | | | Total Cyanide | 0.02mg/1 | | WB3526 | | | ID:17996013 Mat:Water QUARTERLY DAY 20F3 PARAMETERS | SEWER 1 SANITARY 1120-112 RESULTS | KEY | FILE# | | | BOD5 | 36mg/1 | ~ | WB3477 | | | Total Kjeldahl Nitrogen | 25mg/1 | | WB3643 | | | Total Phosphorus | 1.9mg/l | | WB3646 | | | Total Suspended Solids | 24mg/1 | | WB3471 | | | Total Chromium by furnace method | 0.18mg/l | | MA6518 | | | Total Lead | <0.1mg/1 | | MA6497 | | | Total Molybdenum by furnace method | | | | | | | <0.0TWG/T | | MA6485 | | | Total Nickel | <0.01mg/l
0.04mg/l | | | | | Total Nickel
Total Zinc | <0.01mg/1
0.04mg/1
0.09mg/1 | | MA6485
MA6497
MA6497 | | | Total Zinc | 0.04mg/1 | /26/96 G | MA6497 | | | Total Zinc | 0.04mg/l
0.09mg/l
SEWER 1 SANITARY 1122H 06
RESULTS | /26/96 G
Key | MA6497 | | | Total Zinc ID:17996014 Mat:Water QUARTERLY DAY 20F3 PARAMETERS | 0.04mg/l
0.09mg/l
SEWER 1 SANITARY 1122H 06
RESULTS | | MA6497
MA6497
 | | | Total Zinc ID:17996014 Mat:Water QUARTERLY DAY 20F3 PARAMETERS Field pH | 0.04mg/l
0.09mg/l
SEWER 1 SANITARY 1122H 06
RESULTS

7.3SU | KEY | MA6497
MA6497

FILE#

FIELD | | | Total Zinc ID:17996014 Mat:Water QUARTERLY DAY 20F3 PARAMETERS Field pH Amenable Cyanide | 0.04mg/l
0.09mg/l
SEWER 1 SANITARY 1122H 06
RESULTS

7.3SU
<0.01mg/l | KEY | MA6497
MA6497

FILE#

FIELD
WB3526 | | | Total Zinc ID:17996014 Mat:Water QUARTERLY DAY 20F3 PARAMETERS Field pH | 0.04mg/l
0.09mg/l
SEWER 1 SANITARY 1122H 06
RESULTS

7.3SU | KEY | MA6497
MA6497

FILE#

FIELD | | ## ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE Upstate Laboratories, Inc. Analysis Results Report Number: 17796022 Client I.D.: GENERAL SUPER PLATING CO, INC. APPROVAL: <u>Lab</u> <u>I.D.</u>: 10170 | ID:17996063 | Mat:Water QUARTERLY DAY 30F3 | SEWER 2 PRETREATMENT 1125 | -1100H 06/27/96 C | | | |-------------|---|------------------------------------|-------------------|-----------|--| | PA | RAMETERS | RESULTS | | FILE# | | | • | Flow | 86,855gal | FIE |
et to | | | | pH | 8.3SU | | 2177 | | | | Hexavalent Chromium | 0.06mg/l | | 3458 | | | Total | Cadmium | <0.005mg/l | | 5497 | | | Total | Chromium by furnace method | 0.10mg/1 | | 5518 | | | Total | Copper | 0.11mg/1 | | 5497 | | | Total | Lead | <0.1mg/l | | 5497 | | | Total | Nickel | 1.6mg/l | - • • • | 5497 | | | Total | Silver | <0.05mg/1 | | 497 | | | Total | Zinc | 0.05mg/1 | | 497 | | | ID:17996064 | Mat:Water QUARTERLY DAY 30F3 | SEWER 2 PRETREATMENT 1105 | H 06/27/96 G | | | | PA | RAMETERS | RESULTS | KEY FIL | .E# | | | | Field pH | 8.0SU | FIR | מזי | | | | Amenable Cyanide | <0.01mg/1 | , | 594 | | | | Total Cyanide | 0.01mg/l | | 526 | | | ID:17996065 | RAMETERS | SEWER 1 SANITARY 1115-104 RESULTS | KEY FIL | ·E# | | | | BOD5 | 19mg/1 | wo | 477 | | | | Total Kjeldahl Nitrogen | 37mg/1 | WB3 | | | | | Total Phosphorus | 1.7mg/l | WB3 | | | | | Total Suspended Solids | 8mg/1 | WB3 | | | | Total | Chromium by furnace method | 0.13mg/1 | · MA6 | | | | Total | Lead | <0.1mg/1 | MA6 | | | | Total | Molybdenum by furnace method | <0.01mg/1 | MAG | | | | Total | Nickel | 0.04mg/1 | MA6 | | | | Total | Zinc | 0.07mg/1 | MA6 | | | | ID:17996066 | Mat: Water QUARTERLY DAY 30F3 | SEWER I SANITARY 1050H 06 | /27/96 G | | | | PA | RAMETERS | RESULTS | KEY FIL | E# | | | | | | | | | | | Field pH | 7.350 | FIE | LD | | | | | .0.01/1 | WB3 | | | | | Amenable Cyanide | <0.01mg/1 | MD3: | 526 | | | | Amenable Cyanide Oil & Grease Total Cyanide | <0.01mg/1
18mg/1 | WB3 | | | ## ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE Upstate Laboratories, Inc. Analysis Results Report Number: 17796022 Client I.D.: GENERAL SUPER PLATING CO, INC. Amenable Cyanide Oil & Grease Total Cyanide APPROVAL: _______ Lab I.D.: 10170 **WB3560** WB3692 WB3560 Sampled by: ULI | ĪD:18096092 i | Mat:Water QUARTERLY DAY 4 | SEWER I SANITARY 1055-10 | 030H 06/28/96 C | | |---------------|------------------------------|--------------------------|-----------------|--------| | PAI | RAMETERS | RESULTS | KEY | FILR# | | | | | | | | | BOD5 | 73mg/1 | | WB3477 | | | Total Kjeldahl Nitrogen | 54mg/l | , | WB3664 | | | Total Phosphorus | 2.6mg/l | • | WB3663 | | | Total Suspended Solids | 12mg/1 | . , | WB3500 | | Total | Chromium by furnace method | 0.19mg/l | , | MA6518 | | Total | Lead | <0.1mg/1 | | MA6495 | | Total | Molybdenum by furnace method | <0.01mg/l | | MA6562 | | Total | Nickel | 0.06mg/l | | MA6495 | | Total | Zinc | 0.04mg/1 | - | MA6495 | | ID:18096093 A | Mat:Water QUARTERLY DAY 4 | SEWER I SANITARY 1035H | 06/28/96 G | | | PAI | RAMETERS | RESULTS | KEY | FILE# | | | | | | | | | Field pH | 7.8SU | | FIELD | <0.01mg/l <0.01mg/1 10mg/1 #### KEY PAGE - 1 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS - 2 MATRIX INTERFERENCE - 3 PRESENT IN BLANK - 4 ANALYSIS NOT PERFORMED BECAUSE OF INSUFFICIENT SAMPLE - 5 THE PRESENCE OF OTHER TARGET ANALYTE(S) PRECLUDES LOWER DETECTION LIMITS - 6 BLANK CORRECTED - 7 HEAD SPACE PRESENT IN SAMPLE - 8 QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE QUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL. - 9 THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID - 10 ADL (AVERAGE DETECTION LIMITS) - 11 PQL (PRACTICAL QUANTITATION LIMITS) - 12 SAMPLE ANALYZED OVER HOLDING TIME - 13 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM THE FILTERING PROCEDURE - 14 SAMPLED BY ULI - 15 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL; HOWEVER, THE VALUES ARE WITHIN EXPERIMENTAL ERROR - 16 AN INHIBITORY FACTOR WAS OBSERVED IN THIS ANALYSIS - 17 PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING - 18 DEPENDING UPON THE INTENDED USE OF THIS TEST RESULT, CONFIRMATION BY GC/MS OR DUAL COLUMN CHROMATOGRAPHY MAY BE REQUIRED - 19 CALCULATION BASED ON DRY WEIGHT - 20 INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE PRACTICAL QUANTITATION LIMITS - 21 UG/KG AS REC.D / UG/KG DRY WT - 22 MG/KG AS REC.D / MG/KG DRY WT - 23 INSUFFICIENT SAMPLE PRECLUDES LOWER DETECTION LIMITS - 24 SAMPLE DILUTED/BLANK CORRECTED - 25 ND (NON-DETECTED) - 26 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS/BLANK CORRECTED - 27 SPIKE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX INTERFERENCE - 28 POST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF THE CONTROL LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE PQL
- 29 ANALYZED BY METHOD OF STANDARD ADDITIONS - 30 METHOD PERFORMANCE STUDY HAS NOT BEEN COMPLETED/ND (NON-DETECTED) - 31 FIELD MEASURED PARAMETER TAKEN BY CLIENT - 32 TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED - 33 NON-POTABLE WATER SOURCE - 34 THE QUALITY CONTROL RESULTS FOR THIS ANALYSIS INDICATE A POSITIVE BIAS OF 1-5 MG/L. THE POSITIVE BIAS FALLS BELOW THE PUBLISHED EPA REGULATORY DETECTION LIMIT OF 5 MG/L BUT ABOVE 1 MG/L. - 35 THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON PETROLEUM DISTILLATES - 36 MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY - 37 MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY - 38 MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINE (CL2) / POUNDS (LBS) PER DAY OF CL2 - 39 MICROGRAMS PER LITER (UG/L) / POUNDS (LBS) PER DAY - 40 MILLIGRAMS PER LITER (MG/L) LINEAR ALKYL SULFONATE (LAS) / POUNDS (LBS) PER DAY LAS - 41 RESULTS ARE REPORTED ON AN AS REC.D BASIS - 42 THE SAMPLE WAS ANALYZED ON A TOTAL BASIS; THE TEST RESULT CAN BE COMPARED TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20, CREATING A THEORETICAL TCLP VALUE - 43 METAL BY CONCENTRATION PROCEDURE - 44 POSSIBLE CONTAMINATION FROM FIELD/LABORATORY #### UPSTATE LABORATORIES, INC. Analysis Results Report Number 17796022 July 30, 1996 Date: #### ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE | CLIENT I.D. GENERAL SUPER PLATING CO., INC. (QUARTERLY) (SEWER 1 SANITARY) | DEPARTMENT
OF HEALTH
CODES * | 4 DAY
AVERAGE ** | | |---|---|--|--| | ULI I.D. | | | | | Field pH BOD5 Total Kjeldahl Nitrogen Total Phosphorus Total Suspended Solids Amenable Cyanide Flash Point *** Oil & Grease Total Cyanide TOTAL: Chromium by furnace method Lead Molybdenum by furnace method Nickel Zinc | 2202
2057
2230
2333
2349
2179
4000
2291
2166/2171
2137
2017
2266
2017
2017 | 7.5SU 37mg/l 36mg/l 2.0mg/l 15mg/l <0.01mg/l 12mg/l <0.01mg/l <0.1mg/l <0.01mg/l 0.06mg/l 0.09mg/l | | | | | | | ^{*}DOH Method 2010 used for Digestion. Sampled by ULI. NYS DOH I.D.: 10170. Approved: 7/30/96 Note: See disclaimer on cover letter. ^{**}Average results are from samples taken 6/25, 6/26, 6/27 and 6/28/96. ***Sample taken 6/25/96. #### UPSTATE LABORATORIES, INC. Analysis Results Report Number 17796022 Date: July 30, 1996 #### ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE | | | | | |--|---|---|--| | CLIENT I.D. GENERAL SUPER PLATING CO., INC. (QUARTERLY) (SEWER 2 PRETREATMENT) | DEPARTMENT
OF HEALTH
CODES * | 3 DAY
AVERAGE ** | | | ULI I.D. | | | | | Field pH Hexavalent Chromium Amenable Cyanide Total Cyanide TOTAL: Cadmium Chromium by furnace method Copper Lead Nickel Silver Zinc | 2202
9146
2179
2166/2171
2017
2017
2017
2017
2017
2017 | 8.2SU
0.10mg/l
<0.01mg/l
0.01mg/l
<0.005mg/l
0.16mg/l
0.07mg/l
<0.1mg/l
1.2mg/l
0.07mg/l
0.04mg/l | | | | | | | | | | | | ^{*}DOH Method 2010 used for Digestion. NYS DOH I.D.: 10170. Approved: 7/30/96 Note: See disclaimer on cover letter. ^{**}Average results are from samples taken 6/25, 6/26 and 6/27/96. Sampled by ULI. | oject: -: | Quarterly | PAY | 10F3, | | arte de la companya | | |-------------------|--|------------------------|----------------|--|--
--| | ite: | ; | • | : | 4 | | 1 | | | | | | | | and the second s | | ocation | Sower 1 | | Timo Sam | pled: | 110% DELIDING | o: (entered by lab) | | i
eld Measurem | | | - | • | Weather Conditions: | 65° CKULY | | OW , | 101113.
17.14 | • | (record units) | | , , | b s caody | | emperalure . | NA | . С | | | Appearance/Observation | s: LT Becur | | ыпрышыю,
Н | 7.6 | std. units | | | | | | pac. cond. | | umhos/cm | | | | | | urbidity | ~/ | NTU | | | | : | | hlorine res. | - is . | mg/l Cl2 | · | | If testing for cyanide: | If testing for phenolics: | | ulfite · | | mg/l | | | chlorine res. 112 | chlorine ros. | | ls. oxygen | / ! | mg/l | | | sullide Aug | | | | , | • | | 81000000
810000000000000000000000000000 | | _ | | cation | La a o | 364411134114413A0H1141 | Time Samp | naci: | i i ^{4 5} luti id No | ::(entered:by läb): | | · | Selece & | | • | ,,,,,, | | | | ld Measurem | ients: | | | | Weather Conditions: 🕟 | 1.UKIDE | | ow' | R8710 60 | 4 | (record unite) | , | | | | imperature | <u> </u> | . С | • | | Appearance/Observation | s: <u> </u> | | Н. | 7.9 | , std. units | | • | | | | pec. cond. ' | | umhos/cm | | | | | | ırbldity | .0/ | NTU | • | | | | | hlorine res. • | · / \\ | mg/l Cl2 | | | If testing for cyanide: | If testing for phenolics: | | ullite | | mg/I | | | chlorino res | chlorine res. N. M | | ls. oxygen | 7 | mg/l | | | sullide | _ | | | | | | | | | | cation | | | Time Samp | oled: | ULI ID Në | . (entered by lab) | | Id Measurein | ients: | | | | Weather Conditions: | SECRETARIOS SOCIETARIAS ESCRIBIOS ANTICIDADES EN ESCRIBIOS ESCRIBIOS ESCRIBIOS ESCRIBIOS ESCRIBIOS ESCRIBIOS E | | ow. • | | - | (record unite) | ٠ | | | | mporature | | · · · · · | | | Appearance/Observations |]; | | 1 | | sid. units | • | | | | | ec. cond. | | umhos/cm | | | • | | | bldity ' | , | NTU | • • | | er i kanan in in in | | | orine res.' _ | | mg/l Cl2 | : | - 11 | testing for cyanide: | If testing for phenolics: | | ille <u>-</u> | • | mg/l | | | chlorine res. | chlorine res. | | oxygen | | nig/l | | | sullide . | 1 | | | i di de la composition della c | | <u> </u> | ewen
1 | | | | ler (print): | Entry Him | e | gnature: k | 1.1 | Ly virginia de la companya della companya de la companya della com | A CONTRACTOR OF THE | | ap viatei | / Surface Water / | wastewate | er: Field Log | Revised: 3/05 | |---------------------------|-------------------|--|---|--| | llont: | General Super | PLATING: | | | | oject: | OUARTERLY 10. | | | | | 110: | 6-26-96 | | | | | | | | \$100 Except Control (Control (| | | ocation | Sewei 1 | _Time Sampled | : // a Uillid Not | (entered by lab) | | i
eld Measurein | ents: | • | Weather Conditions: | 75° 5000 Y | | low , | NA. | (record units) | | | | lemperature | NAC | | Appearance/Observations: | DARK BROWN | | H | 7.3 sld. units | | | | | spec. cond. | umhos/cm | · | | | | urbidity
chiorine res. | NTU mg/l Cl2 | | If testing for cyanide: | If testing for phenolics: | | cullite · | mg/l | · | chloring res. | chlorine res. AA | | Jls. oxygen | //: mg/l | | sullide /A | | | | | | in Managara | | | ocation | Sower 2 | _Time Sampled: | //った UUIDNo.i | entered by Iab) | | eld Measurem | ante | | Weather Conditions: • | INSIDE | | low
low | 9-1961 6165 | (record units) | Tradulor Constitutions. | 1/03(0) | | emperature . | NA C | , | Appearance/Observations: | Cloudy | | Н | 8-4 std. units | | | | | spec. cond. | umhos/cm | | | | | urbidity | NTU | • | | | | chlorine res. | mg/l Cl2 | | If testing for cyanide: | If testing for phenolics: | | sullite
Ils. oxygen | mg/l | • | chlorine res. | chlorine res. NA | | no. oxygen | mg/l | | sulfide | ran ann ann ann an airtean sta an ann an ann an an an an an an an an | | ocalion | | Time Sampled: | ULI ID¹Nü.:(| entered by lab) | | ,
eld Measurem | Ants: | • | Weather Conditions: | | | low. | • | (record units) | · · · · · · · · · · · · · · · · · · · | | | emperature _ | C | | Appearance/Observations: | | | H | sld. units | | | | | rec. cond
rbidity | umhos/cm | | | | | lorine res. | NTU mg/l Cl2 | | I lasting for quantity | | | IIIIe | mg/l | · · · · · · · · · · · · · · · · · · · | l testing for cyanide:
chierine res. | If testing for phenolics: | | r oxygen. | mg/l | | sullide . | chlorine res. | | | | varieten en e | | | | pler (print): 👃 | c. Th Williams s | Ignatur <u>e: 🎉 t</u> | I William In | 10: //2/// | | IKU mangangan | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | A to the state of the state of the | 100 1-370 | | ilont: | | | | | | | |-------------------|---------------------------------------|------------|--|----------------------------------|---------------------------------------|--| | | GENERAL | Super | VLATING | of a service of the first of the | | | | oject: | • | CLY DAY | 3 of 3 | | _ | | | ite: | 6-27-98 | | | | | 17 | | • | | | | 50 | | | | ocalion | <u>Scu ir</u> | 1 | _Time Sampled | 1: 16 A | TOLLID No.: | (enlered by lab) | | old Measurem | ents: | • | • | Weather Cond | lillons: | 75° Sun Y | | low , | NA | • | (record_unite) | | • · | | | emperature . | NA | C | | Appearance/C | bsorvations: | BROWN | | H | 7-3 | std. units | | , | · · | | | spec. cond. | · | _ umhos/cm | •, | | | | | urbidity | N/ | NTU | • . | 7 | • | | | hlorine res. | <u>/A</u> | mg/l Cl2 | · , | If testing for cy | yanlde: | If testing for phenolics: | | sulfite | | | • • • |
chlorine res. | _N/ | chlorine res. NA | | lla. oxygen | / | mg/l | | ebilius | · /A | | | | | | | #1:#08081.4:#1;#04848 | * | | | ocation | Sewer. | 2 | _Time Sampled | : 1105 | ULI ID No. (| entered by Iab) | | | | | - | · Manthan Canal | | الاستان المستان المستا
المستان المستان المستا | | eld Measurem
: | | 0.15 | | weather Cond | illions: • _ | INSIDE | | low' | 86, 355 | _ | (record unite) | 100 | | . (1- 1) | | emperature
 | NA | _ С | • | Appearance/O | bservalions:_ | Cloudy | | р Н | 9.0 | std. units | • | | · | | | spec. cond. | | _ umhos/cm | . , | | · · · · · · · · · · · · · · · · · · · | | | urbidity | $\frac{\cdot \mathcal{N}}{1}$ | _ NTU | | | | | | chlorine res. | <u> </u> | mg/l Cl2 | | If testing for cy | /anide: / | If testing for phenolics: | | sulfite
" | . / | mg/i | | chlorine res. | $-\mathcal{N}_{/}$ | chlorine res. NA | | lls. oxygen | <u>/</u> | mg/l | | suliide | - /// | | | agalian | | | TI 0 | | liiiin Ni | | | ocation | | | Time Sampled | | inrungs(| entered by lab) | | eld Measurem | ents: | | | Weather Cond | Itlons: | | | low | , | • | (record units) | | ~ | | | omperature _ | | c | | Appearance/Ol | bservalle ns : | | | н | • | sld. units | | | | | | oec. cond. | · · · · · · · · · · · · · · · · · · · | umhos/cm | | | • | | | rbidity ' _ | | NTU | | erte i i karj | | | | lorine res. | | mg/l Cl2 | | If testing for cya | • | If testing for phenolics: | | III - | | mg/l | • , | chlorine res. | | chlorine res. | | oxygen | | ្រាព្ទ/វ | | sullide . | | 1 | | | enauminining part | | are de la company co | | | | | oler (print): 🗼 | ath 64-11. | AMS S | Ignature: 🖟 | 417.4.11 | 1 | | | | | ~ | · U · · · · · · · · · / / / / / | ヘル・コ・フィリエ・ | Da | Int Thank 1/2 1 1 . | | ap Water / S | Surface ' | Water / | Wastewat | er. Field Lo | g | Revised: 3/95 | |--|---|---------------|----------------|--|--|--| | llent: 6 | OUERAL | Super. | Ocative : | | | | | oject: | ingleri | Y DAY | 4 /Pie 1/1 | المالية المالية المالية المتعارض | | | | 1.7 | 5.23.96 | • . | | Company of the Control | | | | | | | _ | | | | | ocation | ewin | 1 | Time Sample | d: 10 3 5 | ULI ID No. | (entered by lab) | | ı | | - | | | 7 | man and and a state of the stat | | old Measurement | | • | | weather Cond | illions: | 75° SUNNY | | llow | $\mathcal{N}A$ | -
C | (record units) | Appearance/O | hsarvallans | ET BROWN | | lemperature. | NA | std. units | | Appearancero | D301 14410110. | | | pH | . / .0 | umhos/cm | • | | • | | | spec. cond. | 1 - / | NTU | • | | | | | chlorine res. | / // | mg/I Cl2 | | If testing for cy | ranicia: | If testing for phenolics: | | sullije . | ///- - | _ ing/l | , | chloring res. | amuo. | chlorine res. | | dls. oxygen | · · · · · | - mg/l | • | sullide | - V/A | Cindinio 103. | | ans. oxygan | | | | | | | | ocalion | | | Time Campled | i. 41. 40. 51. 41. 51. 61. 61. 61. 61. 61. 61. 61. 61. 61. 6 | li i i in kia i | anlara (hiziali) | | | | | Time Sampled | i. | ייינון שניינו
י | enlered by Iab) | | eld Measurements | : | | | Weather Cond | itions: | | | llow [*] | | | (record unite) | | , <u>-, -</u> | | | temperature | ••• | С | | Appearance/Ol | bservations: | | | pH . | | std. units | | | · | | | spec. cond. | • | umhos/cm | | | | | | turbidity . | سع در | NTU | • | | | | | chlorine res. | | mg/l Cl2 | | If testing for cy | anlde: | If testing for phenolics: | | sullite | | mg/l | • | chlorine res. | | chlorine res. | | uls. oxygen | | mg/l | | sullide | | | | 40.04.2.3.3.4.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. | | | | | | | | .ocalion | <i>.</i> | | Time Sampled | ! | ULI ID Na. (i | entered by lab) | | ield Measurements | | | | Wanthar Cond | i | A CONTROL OF THE PROPERTY T | | flow. | | • | A CAMBA A | Weather Condi | Hons: | <u> </u> | | temperature | | . C | (record unite) | Appearance/Ob | servatione. | | | pH | • | sld. unlls | • • | Appourance Co | , | | | spec. cond. | | umhos/cm | | | | : | | urbidity ' | | NTU | • | | e. (1.16 | | | hlorine res. | | mg/l Cl2 | | If testing for cyal | | If testing for phenolics: | | ullle | , | mg/l | | chlorine res. | | chloring for phenolics: | | is. oxygen' | | mg/l | | sullide | | Autoritia 143' | | | | | | | Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de | KENNY NY CANAGONIA NA BANDANA | | pler (print): | 1. 1.1.11. | <u>4m5</u> SI | gnature: | W. W. | Da | 10: 1/2 8/8/ | DATE(S) 6/24 25/96 בשונוד בחוונו אחווים יידום PROJECT Quarterly DAY 20F3 LOCATION Sewer 1 | F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | |--|----------|----------------| | 65P116/25456W24111118 | | | | A CONTRACTOR OF THE STATE TH | | | | 101 | | 5 | | | | | | 7 (2) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | ET SHAN | | | | X | | | - 11
 | ÇĀ (CĀ) | | | | M | | | ĒT I | EAS | | | 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | [A] | | | 50 12 | UREME | | | | | | | 7 | <u>; 2</u> | | | | | | | | | <u> </u> | | | | | | | \$51 3 11 11 12 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | | | | | | 11 6 P 2 7 0 | | | | 11 6. P. 2 7.0 | | | 2 | | | | | | | 5 | | • | | | | | | | 3 | | | 2 - 4 - 6 - 8 - 10 - 12 - 12 - 1 - 10 - 12 - 12 - 10 -
12 - 10 - 12 - 10 - 12 - 10 - 12 - 10 - 12 - 10 - 12 - 10 - 12 - 10 - 12 - 10 - 10 | | | | | | | | | | | | | | • | | | | • | PROJECT QUARTERLY DAY 30F3 LOCATION School 4 | 650-6-26-16 | | |--|--| | NIN TO THE PROPERTY OF PRO | | | 17 13 624 (-11) | | | 7.0 | | | | 8 | | | | | | | | | | | | | | 7 2 4 4 6 5 8 11 10 12 12 12 12 12 12 12 12 12 12 12 12 12 | 2 4 6
8 12 | | | J. J | | | | | | \times_{\text{\tin}\text{\tin}\text{\texi\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\texit}\xi}\\\ \ti}\\\ \tinttitex{\text{\text{\text{\text{\text{\texit}}\\ \tinttitex{\text{\texit{\texi}\tint{\text{\ti}\tinttitt{\ti}\tinttitt{\text{\text{\text{\texit{\texi{\texi{\text{\texi}\tit | | | JUNE DE LA CONTRACTION C | 3
3
22 | | | | | 2 - 4 - 6 - 1 - 10 - 12
6 - 1 - 10 - 12 | | | | | | | A MINIMULE OF | | | | | ANALYTICAL MEASUREMENTS: ANALYTICAL MEASUREMENTS: 1 | WE | I | 307 | ` | | |--|----------------|----------------------|----------|--|---------------------| | ANALYTICAL MEASUREMENTS 22 22 22 22 22 22 22 22 22 22 22 22 22 | | 4 | | | | | ANALYTICAL MEASUREMENTS OTHERS OF THE PROPERTY PROPERT | | | | | | | ANALYTICAL MEASUREMENTS ANALYTICAL MEASUREMENTS TO THE PROPERTY OF PROPE | | | | 1 | | | ANALYTICAL MEASUREMENTS: ANALYTICAL MEASUREMENTS: 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | ALY I ICAL MEASUREMENTS: Althorized California Cal | Y | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | TY I CAL MEASUREMENTS: O | | | | 4411.0111.01 | A | | CALMENUS 12 12 13 14 15 15 15 15 15 15 15 | Ļ | | | | 7 | | | * | | | | <u>ַ</u> | | | ٢ | | | | | | | 17 | | <u> </u> | eletroticio de | i A | | | Ε ι | | | | | | | Ų | | | | | | | Ļ | | | | | | | | :- 1() - | | | (/ | | | ر
ر | | | | | | | | <u> </u> | | | | | | | | | | | | 10 11 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | | L 1 1 ! | | | | | | | | | <u> </u> | | | | | | | | | | | | 10::::: | . 4 | باللوج
التلالياني | 10111 | | | 2 | | | | | | | | | | | | | | | | | 11111115 | | | | <u>`</u>
}! | | IIIIIII | | | | | 3 | | | | | | | | <u> </u> | | | | | |) | | | | | | | ان.
ان | | | ·\ | | | 1 | | | | | | | | | -2 | | | Later Land and Land | | | | . !!!. : | | | Barthire Late | | 3 | 1 | | | | | | | | | | 11212 | | | | | 3 | | | | | | | | | | | | | () | | | | | | | : | 2.2.1 | | 11132 4 | | PROJECT QUARTERLY DAY 4 (per client) LOCATION Sower 1 11796022 - 25 Ipstate Laboratories, Inc. 034 Corporate Drive E. Syracuse New York 13057 Chain Of Custody Record 15) 437 0255 Fax 437 1209 lient: Project # / Project Name GENERAL SUPER PLATING QUARTERLY DAY 1 OF 3 of lient Contact: Location (city/state) Address Cón-Phone # Remarks JOHN JODOIN SYRACUSE, NY 446-2264 tain-ULI Internal Use Only ample ID ers Date Matrix Grab or Time 3) 4) 5) 6) 7) 1) 2) 8) 9) 10) Comp. /-/20 Х 1-25.76 SEWER 2 PRETREATMENT COMP 10:400 X SEVER 2 PRETREATMENT **GRAB '**3 Χ COMP SEWER I SANITARY 120 SEWER 1 SANITARY **GRAB** Sampled by:(Print) ". parameter and method Name of Courier (if used) sample bottle: type size pres. Keith Williams NONE CR+6 PLASTIC 500ml Company: NAOH A-CN , T-CN **PLASTIC** 4000ml (16F T-CD, CR+, CU, PB, NI, AG, ZN PLASTIC HN03 500m1 Relinquished by: (Signature) Date ... Time -- Received by: (Signature) FLOW N/A N/A FIELD PH NONE PLASTIC 2000ml BOD5,TSS Relinquished by: (Signature) Date Time Received by: (Signature) TKN,T-P **PLASTIC** 500ml H2S04 8) 08G **GLASS** 32oz H2S04 PLASTIC HN03 500ml T-CR*,PB,MO*,NI,ZN Relinquished by: (Signature) Date Rec'd for Lab by: (Signature) emiT PLASTIC 250ml NONE FLASHPOINT Note: The numbered columns above cross reference with the numbered columns in the upper right hand corner. w pstate Lavoratories, knc. 6034 Corporate Drive . E. Syracuse, NY 13057-1017 Chain Of Custody Record (315) 437 0255 Fax 437 1209 Client Client Project # / Project Name No. Special Turnaround GENERAL SUPER PLATING QUARTERLY DAY 2 OF 3 Time__ of Client Contact Site Location (city/state) Phone # Con-(Lab Notification JOHN JODOIN required) 446-2264 SYRACUSE. NY tain-Sample Location: **ULI Internal Use Only** Date Time Matrix Grab or ers Remarks 2h (03) Comp. 5) 6) 7) 8) 9) 10) 11) 4) 10:100 17996011 **SEWER 2 PRETREATMENT** . 2 . Χ COMP 11:05 4 لدا SEWER 2 PRETREATMENT 6.25-96 **GRAB** A 11:204 **SEWER 1 SANITARY** 13 ໌ 3) COMP χ X 11:201 X 1/20 4 (z)SEWER 1 SANITARY X X ĠRAB parameter and method Sampled by: (Please Print) sample bottle: type size pres. **ULI Internal Use Only** Delivery (check one): Keth Williams 1) PH NONE ULI Sampled PLASTIC 120m1 Company: ☐ Pickup ☐ Dropoff 2) CR+6 PLASTIC 500m1 NONE ULI 3) A-CN, T-CN 4000m1 Relinquished by: (Signature) Date Time Received by: (Signature) NAOH PLASTIC 4) T-CD,CR*,CU,PB,NI,AG,ZN PLASTIC 500m1 HN03 5) FLOW N/A 6) FIELD PH Received by: (Signature) Relinquished by: (Signature) Date Time 7) BOD5,TSS NONE PLASTIC 2000m1 8) TKN.T-P PLASTIC 500m1 H2S04 Relinquished by: (Signature) Date Time Received by: (Signature) 9) 0&G 32oz **GLASS** H2S04 10) T-CR*, PB, MO*, NI, ZN **PLASTIC** 500m1 **HN03** Relinquished by: (Signature) Date Time Rec'd for Lab by: (Signature) 11) 44 Svracuse Rochester Note: The numbered columns above cross-reference with the numbered columns in the upper right-hand corner. Buffalo Albany Binghamton Fair Lawn (NJ) U pstate Laboratories, Lnc. 6034 Corporate Drive • E. Syracuse, NY 13057-1017 Chain Of Custody Record | (315) 437 0255 | Fax | 437 1209 | | | | | | • | | , | ٠. | | | | | | | | 1/12 | |----------------------------------|--|--|-----------------|-------------|--------------------------|-------------|--|--------------|-----------|----------------|-------|------------|------|-------------|--|--|----------|-------|-------------------------| | Client | | Client Proje | ect # / Project | Name | | | No. | | | | | | | | | | | S | pecial Turnaround | | GENERAL SUPER PLATING | • • • • • • • • | OUART | TERLY DAY 3 OF | - 3 | | • | of | | | | | | | | • | | | | Time | | Client Contact | Phone # | Site Location | on (city/state) | | | | Con- | 1 | | | | | | | | | | l (t | Lab Notification | | JOHN JODOIN | 446-2264 | SYRACUS | SE, NY | 1 | | • | tain- | | | | | | | | | | | · · | required) | | Sample Location: | Date | Time | Matrix | Grab or | ULI intern | al Use Only | ers | | | | | | · | | | | | 1 | | | | | | | Comp. | | | | 1) | ر2) | (3) | 4) | 5) | 6) | 7) | . 8) | 9) | 10) | 11) | Remarks | | SEWER 2 PRETREATMENT | 6-26.96 | 11:25 4 | 1-120 | COMP | 1799 | 6063 | (2), | X | 1 21
X | | Х | X | | | | | | | | | SEWER 2 PRETREATMENT | 6-27-96 | 1105/ | | GRAB | | 64 | 2(1 | b | _ | χ | | | X | | | | | | | | | | | | | * ** ** ** ** | | | | | | | | | | | | | | | | SEWER 1 SANITARY | 6-26-96 | 10:154 | - | COMP | | 145 | (3) | | | | | | | Х | Х | | X | | _ | | SEWER 1 SANITARY | 6.27.96 | 10 19 | HZO | GRAB | 424. a.g | 106 | (2) | | ļ | х | | | Х | | | х | | | | | | 10 - 10 | | | . 1 | | | | | | | | | | | | | | | | | | · | | <u> </u> | | | | | <u> </u> | <u> </u> | | | • | | | ļ | | | | | | | | | | | -75 - 12 C | (gright san | | | | <u> </u> | | | : | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | \vdash | | | | | | | | | | | | | - | <u> </u> | - | | | | | | | <u> </u> | | | | parameter and method | | <u> </u> | sample bottle: | type | size | pres. | Samp | oled t | by: (F | leas | e Pri | nt) | L | <u> </u> | 1 | ļ | ULI | Inter | rnal Use Only | | 1) PH | | | | PLASTIC | | NONE | | Cit | | | | | 13 | | | | Deli | iverv | (check one):
Sampled | | | · · · · · · · · · · · · · · · · · · · | | | | 120m1 | | Com | pany: | : | | , , | | • | | | | | Pickı | JD □ Dropoff | | 2) CR+6 | - : | ·.
 | | PLASTIC | 500m1 | NONE | | ر ر | I | - | | | | | | | | CC_ | | | 3) A-CN,T-CN | | | · | PLASTIC | 4000m1 | NAOH | Relin | quist | ned b | y: (S | ignat | ure) | Date | 9 | Tim | e | Rec | eive | d by: (Signature) | | 4) T-CD,CR*,CU,PB,NI,AG,ZN | | | | PLASTIC | 500m1 | HNO3 | | | | | | | | | | | | | | | 5) FLOW | | | | N/A | | | 1 | , | | | | | | | ĺ | | | | | | 6) FIELD PH | | · · · · · · · · · · · · · · · · · · · | | N/A | - | | Relin | nguisi | hed t | ov: (S | ignal | ure) | Date | | Tim | e | Rec | eive | d by: (Signature) | | 7) BOD5,TSS | | ··· · · · · · · · · · · · · · · · · · | | PLASTIC | 2000m1 | NONE | | • | | • | J | , | | | | | | • | , , , | | 8) TKN,T-P | | | | PLASTIC | 500m1 | H2S04 | | | | | | | _ | | ļ | | <u> </u> | | | | 9) 0&G | | · | | GLASS | 32oz | H2S04 | Relin | laiupr | hed b | oy: (S | igna | ture) | Date | 9 | Tim | e | Rec | eive | d by: (Signature) | | | | | • | 1 . | <u> </u> | | 1 | | | | • | | | | | | | | • | | 10) T-CR*,PB,MO*,NI,ZN | | | | PLASTIC | 500m1 | HN03 | Relin | nquis | hed l | (S | igna | lure) | Date | 9 | Tim | ie, | Rec | 'd fo | or Lab by: (Signature) | | 11) | · | | | <u> </u> | 1 |
 | 1\/ | 11 | 4 | |] | - , | 6/2 | 7/ | 1/ | ノト | ļ | | | | Note: The numbered columns above | cross-reference | e with the nu | mbered columns | in the uppe | r right-han | d corner. | Ker | 14 | ω | ul | | | _ | ·\$/ | <u> </u> | | / | K | /1 | Cair Laura /ALD D. Hala psiate Laboratories, Anc. 6034 Corporate Drive • E. Syracuse, NY 13057-1017 Chain Of Custody Record (315) 437 0255 Fax 437 1209 Client Client Project # / Project Name No. Special Turnaround QUARTERLY DAY 4/ Poe Chent GENERAL SUPER PLATING Time of Client Contact Phone # Site Location (city/state) Con-(Lab Notification JOHN JODOTN required) 446-2264 SYRACUSE, NY tain-Sample Location: Grab or Date Time Matrix ULI Internal Use Only ers Remarks Comp. 1) 2) 4) 5) 6) | 7) | 8) | 9) | 10) | 11) SEWER 2 PRETREATMENT SEMER 2 PRETREATMENT CDAR 6 77 96 10 55 A 6 73 96 10 30 A SEWER 1 SANITARY 1/20 (3) 18096092 **€**OMP X 6.03.96 1035 Hro 93 (2) SEWER 1 SANITARY χ ĞRAB X X $\mathcal{F}_{n} := \{ \mathbf{e}_{n}(\mathbf{e}_{n}) \in \mathcal{F}_{n}(\mathbf{e}_{n}) \mid \mathbf{e}_{n}(\mathbf{e}_{n}) \}$ ·學出現(4)(4) parameter and method Sampled by: (Please Print) sample bottle: lype size pres. ULI Internal Use Only Delivery (check one): Keith Williams 1) PH ULI Sampled PLASTIC NONE 120m7 ☐ Pickup Company: ☐ Dropoff 2) CR+6 NICT NONE PLASTIC-500m1 CC_ 3) A-CN, T-CN Time Received by: (Signature) 4000m1 Relinquished by: (Signature) Date NAOH PLASTIC 4) T-CD, CR*, CU, PB, NI, AG, ZN PLASTIC 500m7 **HN03** 5) FLOW 6) FIELD PH N/A Time Received by: (Signature) Relinquished by: (Signature) | Date 7) BOD5,TSS NONE PLASTIC 2000m1 8) TKN,T-P 500m1 H2S04 **PLASTIC** Received by: (Signature) Relinquished by: (Signature) | Date Time 9) 0&G 32oz **GLASS** H2S04 10) T-CR*, PB, MO*, NI, ZN **PLASTIC** 500m1 HN03 Relinquished by: (Signature) Date Rec'd for Lab by: (Signature) Time, 11) 1/95/70 Note: The numbered columns above cross-reference with the numbered columns in the upper right-hand corner. D. . 41 - 1 - Dinahamian Enint auga ININ # Upstate Laboratories inc. Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209 Mailing: Box 289 • Syracuse, NY 13206 Buffalo (716) 649-2533 Rochester (716) 436-9070 Albany (518) 459-3134 Binghamton (607) 724-0478 June 28, 1996 New Jersey (201) 703-1324 Mr. William Southwell Vice-President, General Mgr. General Super Plating Co., Inc. 5762 Celi Dr. E. Syracuse, NY 13057 Re: Analysis Report #16496107 - Quarterly Dear Mr. Southwell: Please find enclosed the results for your samples which were collected by ULI personnel on June 12, 13 and 14, 1996. We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more
detailed explanation of your sample. Samples will be disposed of approximately one month from final report date. Should you have any questions, please feel free to give us a call. Thank you for your patronage. Sincerely, UPSTATE LABORATORIES, INC. Anthony J. Scala Director AJS/lw Enclosures: report, field data, strip charts, invoice cc/encs: N. Scala, ULI file Note: Sewer 1 was collected only one day due to a pH excursion. Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. # Upstate Laboratories inc. Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209 Mailing: Box 289 • Syracuse, NY 13206 Albany (518) 459-3134 Binghamton (607) 724-0478. June 28, 1996 Buffalo (716) 649-2533 Rochester (716) 436-9070 New Jersey (201) 703-1324 Mr. William Southwell Vice-President, General Mgr. General Super Plating Co., Inc. 5762 Celi Dr. E. Syracuse, NY 13057 Re: Self-Monitoring Dear Mr. Southwell: This letter is in response to a request from the Onondaga County Department of Drainage and Sanitation regarding sampling techniques used for your Self-Monitoring Compliance. Composite samples are collected using a microprocessor-controlled, peristaltic pump sampler programmed to collect a sample aliquot every thirty (30) minutes. At the completion of a sampling event, the composite is poured into appropriate preserved containers. Grab samples for pH are collected in the field, done at the initial and ending sampling periods daily. If composite pH readings are required, they are done when received at the laboratory. The pH readings are accomplished using a two-point calibrated pH meter. Calibration occurs daily. Grab samples are collected using a glass jar lowered into the effluent sump. For oil and grease, a glass quart jar is retrieved and then preserved with sulfuric acid. Volatile TTO samples are collected with a separate glass container and then poured off into an appropriate headspace container. Upstate Laboratories, Inc. follows sampling guidelines set forth in "Standard Methods for the Examination of Water and Wastewater," as well as the EPA's "Handbook for Sampling and Sample Preservation of Water and Wastewater." Should you have any questions regarding this matter, please feel free to call me. Very truly yours, UPSTATE LABORATORIES, INC. Bryan F. Valentine Technical Services Manager BFV/lw - DATE: 06/28/96 ## ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE Upstate Laboratories, Inc. Analysis Results Report Number: 16496107 Client I.D.: GENERAL SUPER PLATING CO, INC. APPROVAL: Lab I.D.: 10170 | ĪD:16496107 i | Mat: Water QUARTERLY DAY 10F3 | SEWER 2 PRETREATMENT 094 | 5-0945H 06/12/9 | 6 c | |---------------|-------------------------------|--------------------------|-----------------|---------| | PAI | RAMETERS | RESULTS | KEY | file# 🖖 | | | | | | | | • | Flow | 75,437gal | • | FIELD | | | Hexavalent Chromium | 0.04mg/l | | WB3245 | | Total | Cadmium | <0.005mg/1 | | MA6419 | | Total | Chromium by furnace method | 0.039mg/1 | | MA6446 | | Total | Copper | 0.11mg/1 | | MA6419 | | Total | Lead | <0.1mg/1 | • | MA6419 | | Total | Nickel | 0.73mg/1 | | MA6419 | | Total | Silver | <0.05mg/1 | • | MA6419 | | Total | Zinc | 0.02mg/l | | MA6419 | | ID:16496108 | Mat: Water QUARTERLY DAY 10F3 | SEWER 2 PRETREATMENT 100 | OH 06/12/96 G | | | PA | RAMETERS | RESULTS | KEY | FILE# | | | | | | FIELD | | | Field pH | 8.5SU | | | | • | Amenable Cyanide | <0.01mg/1 | | WB3318 | | | Total Cyanide | <0.01mg/1 | , , | Wb3318 | | ID:16496109 | Mat:Water QUARTERLY DAY 10F3 | SEWER 1 SANITARY 0940-09 | 40H 06/12/96 C | | | PA | RAMETERS | RESULTS | KEY | FILE# | | | | | | | | | BOD5 | 38mg/1 | | WB3287 | | • | Total Kjeldahl Nitrogen | 43mg/1 | | WB3373 | | | Total Phosphorus | 2.5mg/l | | WB3422 | | | Total Suspended Solids | 8mg/1 | | WB3279 | | Total | Chromium by furnace method | 0.51mg/l | • | MA6446 | | Total | Lead | <0.1mg/1 | | MA6419 | | Total | Molybdenum by furnace method | <0.01mg/1 | | MA6415 | | Total | Nickel | 0.15mg/l | | MA6419 | | Total | Zinc | 0.07mg/1 | | MA6419 | | ID:16496110 | Mat:Water QUARTERLY DAY 10F3 | SEWER 1 SANITARY 0945H 0 | 6/12/96 G | | | PA | RAMETERS | RESULTS | KEY | FILE# | | • • | | | | | | • | Field pH | 8.1SU | | FIELD | | | Amenable Cyanide | <0.01mg/1 | 4 | WB3318 | | | Flash Point | >60degC | . 7 | WB3343 | | | Oil & Grease | <5mg/l | | WB3398 | | | Total Cyanide | <0.01mg/1 | | WB3318 | | | 4 | | | | #### ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE DATE: 06/28/96 Upstate Laboratories, Inc. Analysis Results Report Number: 16496107 Client I.D.: GENERAL SUPER PLATING CO, INC. Total Cyanide APPROVAL: \overline{Lab} $\overline{\overline{I}}$.D.: 10170 WB3318 Sampled by: ULI | ID:16596057 Mat:Water | QUARTERLY DAY 20F3 | SEWER 2 PRETREATMENT | 1010-0925H 06/13/96 | | |-----------------------|--------------------|----------------------|---------------------|--------| | PARAMETERS | | RESULTS | KEY | FILE# | | | | | • • • | , | | Flow | | 85,364gal | | FIELD | | Hexavalen | t Chromium | 0.09 mg/1 | | WB3258 | | Total Cadmium | • | < 0.005 mg/1 | | MA6408 | | Total Chromium | by furnace method | 0.093 mg/1 | | MA6446 | | Total Copper | • | 0.11mg/l | | MA6408 | | Total Lead | | < 0.1 mg/1 | • | MA6408 | | Total Nickel | | 0.81 mg/1 | , | MA6408 | | Total Silver | | < 0.05 mg/1 | | MA6408 | | Total Zinc | v. | <0.01mg/1 | • | MA6408 | | ID:16596058 Mat:Water | QUARTERLY DAY 20F3 | SEWER 2 PRETREATMENT | 0930H 06/13/96 G | | | PARAMETERS | | RESULTS | KEY | FILE# | | | | | | | | Field pH | | 8.8SU | * | FIELD | | Amenable | Cyanide | < 0.01 mg/l | | WB3318 | < 0.01 mg/1 ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE DATE: 06/28/96 Upstate Laboratories, Inc. Analysis Results Total Zinc Report Number: 16496107 Client I.D.: GENERAL SUPER PLATING CO, INC. APPROVAL: QC: Z H Lab I.D.: 10170 **MA6410** Sampled by: ULI | ĪD:16696109 | Mat:Water QUARTERLY DAY 30F3 | SEWER 2 PRETREATMENT 093 | 0-1150H 06/14/96 C | _ | |----------------|------------------------------|--------------------------|--------------------|----| | PA | RAMETERS | RESULTS | KEY FILE | # | | | | | | | | • | Flow | 94,061gal | FIELI |) | | 4 | Hexavalent Chromium | 0.20mg/1 | WB328 | 35 | | Total | Cadmium | < 0.005 mg/1 | MA641 | LO | | Total | Chromium by furnace method | 0.18mg/1 | MA644 | 16 | | Total | Copper | 0.07mg/l | MA641 | LO | | Total | Lead | <0.1mg/l | MA641 | LO | | | Nickel | 0.48mg/l | MA641 | LO | | Total
Total | Silver | <0.05mg/l | MA641 | | ID:16696110 Mat:Water QUARTERLY DAY 30F3 SEWER 2 PRETREATMENT 1150H 06/14/96 G | PARAMETERS | RESULTS. | KEY | FILE# | |------------------|-----------|-----|--------| | | | | | | Field pH | 9.0SU | | FIELD | | Amenable Cyanide | <0.01mg/l | , | WB3359 | | Total Cyanide | <0.01mg/l | | WB3359 | 0.01 mg/1 #### UPSTATE LABORATORIES, INC. Analysis Results Report Number 16496107 Date: June 28, 1996 #### ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE | CLIENT I.D. | DEPARTMENT OF HEALTH CODES * | , | | |---|---|---|--| | GENERAL SUPER PLATING CO., INC. (QUARTERLY) (SEWER 1 SANITARY) | CODES * | | | | ULI I.D. | | | | | Field pH BOD5 Total Kjeldahl Nitrogen Total Phosphorus Total Suspended Solids Amenable Cyanide Flash Point Oil & Grease Total Cyanide TOTAL: Chromium by furnace method Lead Molybdenum by furnace method Nickel Zinc | 2202
2057
2230
2333
2349
2179
4000
2291
2166/2171
2137
2017
2266
2017
2017 | | | | | | | | *DOH Method 2010 used for Digestion. Sampled by ULI. NYS DOH I.D.: 10170. Approved: 6/28/96 Note: See disclaimer on cover letter. #### UPSTATE LABORATORIES, INC. Analysis Results Report Number 16496107 Date: June 28, 1996 #### ONONDAGA COUNTY WASTEWATER TREATMENT COMPLIANCE | CLIENT I.D. GENERAL SUPER PLATING CO., INC. (QUARTERLY) (SEWER 2 PRETREATMENT) | DEPARTMENT
OF HEALTH
CODES * | 3 DAY
AVERAGE ** | | |--|---|---|--| | ULI I.D. | | | | | Field pH Hexavalent Chromium Amenable Cyanide Total Cyanide TOTAL: Cadmium Chromium by furnace method Copper Lead Nickel Silver Zinc | 2202
9146
2179
2166/2171
2017
2017
2017
2017
2017
2017 | 8.8SU
0.11mg/l
<0.01mg/l
<0.005mg/l
<0.10mg/l
0.10mg/l
<0.1mg/l
<0.05mg/l
<0.05mg/l
0.01mg/l | | | | | | | | | | | | | | | | | ^{*}DOH Method 2010 used for Digestion. NYS DOH I.D.: 10170 Approved: 6/28/96 Note: See disclaimer on cover letter. ^{**}Average results are from samples taken 6/12, 6/13 and 6/14/96. Sampled by ULI. STRIP CHART WORKSHEET PROJECT QUARTERLY LOCATION Sewer #1 PROJECT QUARTERLY DATE (S) 6-11-12-96 DATE (S) 6-11-12-96 LOCATION Scwer * 1 | | / Surface \ | Nator / Wa | wetewater | Field Log | | Revised: 3/95 | |--------------------------|--|--------------------------|-------------------------
--|--|--| | th water | / Ourlace (| valer / vva | | | | | | en l: | General S | PER PLATING | | | in the state of th | | | oject: | QUARTERLY | | 3 | of this hash the | | | | te: | 6-12-96 | | | 特特的人的 | | 17 | | | | | elove sepprantiska | | | | | cation | Seweris | Tin | 10 Sampled: | 943 UI | LLID No. (ent | ered by Inb) | | 1 | | , | | Weather Conditio | ns: 7 | 5° 50004 | | ld Measureir | , , | tean | rd unite) | • • | , . | | | low , | 1/1/ | - C | | Appearance/Obse | ervations: C | LEAR | | emperature. | | _ | | • (Islandian and an | | • | | Н | 8.1 | std. units | | | | | | pec. cond. | | _ umhos/cm | | | | | | urbidity | $\frac{\mathcal{N}}{\mathcal{N}}$ | NTU | | If testing for cyan | sida: | If testing for phenolics: | | hlorine res. | -/F | mg/l Cl2 | • | - | | chlorine res. Not | | allije . | <u> </u> | 'mg/l | | | <u>N.1</u> | Childring 103. | | lls. oxygen | . <u>/ · · · · · </u> | mg/l | • | sullide | NA. | | | | | | | . 60 | | ran Ingarata | | ocation | Sewer 6 | >Tlr | ne Sampled: | 16°2 U | ILI ID Na: (en | retediny ian) | | | • | | | Weather Condition | ons. | 115 N C | | eld Measurer | ments: | | | Merrial County | | 70 31 N C | | llow' | 75.437 6 | 115 (100 | ord unite) | | | | | lemperature | A. | . C | . • | Appearance/Obs | ervalions | ,CGUCY | | pH . | 8.5 | sld. units | | | · | | | spec. cond. | | _ umhos/cm | , | | | | | turbidity | \mathcal{N} | NTU | • | | | <u>.</u> | | chlorine res. | · /p | mg/l Cl2 | , | If testing for cyar | nide: | If testing for phenolics: | | sullite | |
mg/l | | chlorine res. | 1. A. C. | chlorine res. 10 12 | | dis. oxygen | 7 | mg/l | | sullide | ٠ ١١٠٥ | | | | | | | | and the second s | | | ocalion_ | | ·TI | me Sampled | J: | JLI ID Na: (er | itered by lab) | | | | | | ** Weather Conditi | lons: | S(1) 110 100 100 100 100 100 100 100 100 1 | | ield Measure | ements: | | t duality . | Woulder Conditi | | | | flow, | | — | oord unite) | Appearance/Obs | servations: | | | temperature | • | std. units | | Abbadianosi | | | | pH . | • | umhos/cm | | | | • | | spec. cond.
turbidity | | _ uninosem | | | | | | chlarine res. | . ——— | | | | | If testing for phenoiics: | | sullte | | mg/l Cl2
mg/l | • • | If testing for cyan chlorine res. | IIUO. | • • | | lis. oxygen | | | | sullide . | | chlorine res. | | na. Oxygen | KV 11.21.4.71.4.4.11.11.11.11.11.11.11.11.11.11.11.1 | mg/l | ingrecheniosensee | Bumbo | SCENDRO POE INCOMENCIA MANA | ESSESS ENGRAPS OF THE PROPERTY | | • | A ZOZII MINISTERIA REGIONALIA | ariotaipaikakitikanisiit | aramanan katalan
TIV | · · · · · · · · · · · · · · · · · · · | | | | mpler (print): | Keith Will | liums Sig | natur <u>e: स्टि</u> | the with | Dat | e: 8/13/9/ · · · · · | | | | | | | en ar de la company comp | AN CONTROL OF THE PROPERTY | | | | | • | The state of s | AND THE PROPERTY OF THE PARTY O | NAME OF THE OWNER OWNER OF THE OWNER OWNE | | ap Water | / Surface V | Vater / ' | Wastewate | r. Field Lo | g : | Revised: 3/95 | |-------------------|---------------|---|----------------|--|-----------------|--| | lient: | GENERAL | Sugar DIA | HIALG | | | | | oject: | QUARTERLI | | | arite in access | | | | 1 | | | · ::: | with the first terms. | - | | | 110: | 6-13-96 | | | | | | | | | | | <i>C</i> ³ ° | i.
Maria di | | | ocalion | Sewer 2 | | Time Sampled: | 950 p | | entered by lab) | | eld Measurem | nents: | | | Weather Cond | ditions: | INSIDE | | flow , | 8.5 364 6m | 15 | (record units) | | | | | lemperature. | NA | C · | | Appearance/C | Observations: | Cloudy | | рН | 8.8 | , sld. unils | • | | | <u>'.</u> | | spec. cond. | | umhos/cm | • | · | · . | | | lurbidity | <u> </u> | UTN | | - | •• | | | chlorine res. |
/.F. | mg/l Cl2 | • | If testing for c | yanide: | If testing for phenolics: | | cullite . | | mg/l | | chlorine res. | <u> </u> | chlorine res. NA | | dls. oxygen | | nig/l | | eullide | 1.1 | | | | | | | | | | | ocation | | | Time Sampled: | | ULI ID No: (| entered by lab) | | | | | | Weather Cond | dillons: | | | eld Measuren | nents: | | | AAGUIIGI OOM | | | | llow' | | . C | (record units) | Appearance/C | Observations: | | | temperature | | • | | whheatamone | JDSOI VAIIOIIG. | · | | pH . | | sld. units | • | | | | | spec. cond. | | _umhos/cm | • . | | . , | | | turbidity | | NTU | • | If testing for c | wanida: | If testing for phenolics: | | chlorine res. | · | mg/l Cl2 | | chloring res. | yamue. | chloring res. | | dis. oxygen | • | _ mg/l
_mg/l | | sullide . | | CHIOIMIO 103. | | and oxygen | | -
 | | | | | | .ocation | | 999(101 3 00 081 010 081 | Time Sampled | ************************************** | ULI ID Na. (| enlered by lab) | | | | | <u>.</u> | | —
 | | | ield Measuren | nents: | : | | Weather Con | ditions: | | | flow | | | (record unite) | AppagrangalC | Disconnational | ; | | temperature
pH | | . C
sid. units | • | Appearance/C | วมระเงนแบบระ_ | | | spec. cond. | | umhos/cm | | · · · · · · · · · · · · · · · · · · · | | · . | | turbidity | • | NTU | • | 1.1. | 94 | | | chlorine res. | | mg/l Cl2 | | If testing for cy | • | If tooting for phanoline | | cullite | | mg/l | • | chlorine res. | amuo. | if testing for phenolics:
chlorine res. | | lis. oxygen | | mg/l | | sullide . | | omormo (62. | | | | | | | | - | | mpler (print): | Keith William | <u>ทว์</u> ร | Signature: | hode | D | ale: 7/13/97 | | THE STREET | | | | retros de la como | | | | water / Surfac | ce Water / Waste | water Field Log | Revised: 3/95 | |----------------------------|---------------------|---|--| | il: Gene | tal Super Pla | Jua Maria | | | | artealy Day 3 | A RESIDENCE | | | | 1/96 | | | | <u> </u> | 7.0 | The second se | ggreenberg segmenter dag te bereit. | | cation Sewer | 2 Protection Fino S | ampled: <u>//:50</u> | 5 No. (entered by lab) | | | 113/34/1004/ | in | 7 0 10 | | ld Measurements: | | Weather Conditions: | Inside | | emperature 79,00 | | Appearance/Observa | tions: | | emperature $\frac{N}{9.0}$ | | nppodianos es es ra | | | pec. cond. | / umhos/cm | | gi pakalah mengapi dian terpita anta | | urbidity | NTU | | | | hĺorine res. | mg/l Cl2 | If testing for cyanide: | | | ullite | mg/l | chlorine res. \mathcal{N} | chlorine res. NA | | is. oxygen | <u>}</u> mg/l | sullide // | The second of the second of the second | | | | | | | cation | Time S | ampled:OLITE | D'No. (entered by lab) | | d Measurements: | | Weather Conditions: | • | | DW | (record units | | The second of th | | inperature | C | Appearance/Observa | tions: | | | std. units | | etti. 1820. ali oli oli oli oli oli oli oli oli oli eta | | pec. cond. | umhos/cm | | to a la company of the state | | ırbidity <u> </u> | NTU | | | | ilorine res. | mg/l Cl2 | If testing for cyanide: | If testing for phenolics: | | ulfite | mg/l | chiorine res. | chlorine res. | | s. oxygen | mg/l | sulide | The second of th | | vaction | <u></u> - | | | | cation | Time S | ampled: ULI IE | 5 No. (entered by lab) | | ld Measurements: | | Weather Conditions: | | | wo | (record units | 🕽 o o o o o o o o o o o o o o o o o o o | Disposition of the second of the second section section of the second section of the second se | | mperature | C | Appearance/Observa | tlons: | | 4 | std. units | | BBC Committee of the state t | | ec. cond.
bldity | umhos/cm | and the other continue to the continue continue | atinta in antina manarata na ating ngantaran galati m anan galatin a atin
Man | | lorine res. | NTU mg/l C/2 | | | | liite | mg/l Cl2
mg/l | If testing for cyanide: | If testing for phenolics: | | • | | chlorine res. | chlorine res. | | 3.voxygen | mg/I | sullide | 14 Page 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Destate Laboratories, Inc. 034 Corporate Drive E. Syracuse New York 13057 Chain Of Gustody Record | 15) 437 0255 | Fax 4: | Fax 437 1209 | {
! | | . 0 | | | | 0 | | - § | 2 | کُ | - | - | |--|------------------|--------------------------|-------------------------------|---------------|--|-------------|------------------------------|---------------|--------|--------------|---------------|-------------|-------------|----------|---| | ient: GENERAL SUBER RATING | | Project # / Project Name | roject Name | | | | No. | | _ | - | = | 14610,1-110 | | - ≐ | (e) 21/ | | | | ΑυÇ | QUARTERLY DAY | P 3 | | | 으 | | —- | - | | | ,
 | | | | ient Contact | Phone # | Location (ci | Location (city/state) Address | 888 | | | Con- | | | - | | | | | | | NIOGOL NHOL | 446-2264 | SYR | SYRACUSE, NY | | | | | | | | | | | | Hemarks | | ample ID | Date | Time | Matrix | Grab or | UU internal Us | al Use Only | 879 | | | | | | · | | | | | 2 11-31 | | | Comp. | からなる | See See | 13 | 2) | မ | 4) 5) | 6) | 2 | <u>æ</u> | 9 | 9 | | SEWER 2 PRETREATMENT | 6-11-16 | 894.5 | 1/20 | COMP | | | (2) × | | × | × | - | | | | | | SEWER 2 PRETREATMENT | 6.6.6 | 1000 | | GRAB | 战争的 | 经建 期 | 2 | × | | × | | | _ | \dashv | | | | | | | | | | | , | | | | | • | - | | | SEWER 1 SANITARY | 61136 | 9.40 A | 4 | COMP | | | <u>~)</u> | | | | < | < | _ - | - | , | | SEWER 1 SANITARY | | 548
1 | 1/20 | GRAB | | | | ~ | _ | <u> </u> | |] | <u> </u> | ; ; ; | | | | | | | | | | | | | | | | - | 15 | | | | | | | | 英語談 | | | | | | | | _ | + | | | | | | | | | | | | - | | | | _ | \dashv | | | | | | | | | | |
 | | | | 4 | + | | | | | | | | | | | | | | , | | - | \dashv | | | | | | | | ** ********************************** | | | | | | | | - | \dashv | | | | | | | | State C. | | | | | | | 1 | | + | | | | | | | | 医 | | | | | _ | | _ | - | + | | | rameter and method | | , | sample bottle: | type | size | pres. | Sampled by:(Print) | by:(Pri | 른
- | - | | _ | - | 2 | | | CR+6 | | | | PLASTIC | 500m l | | 大会 | Keth Williams | _ · | ()
%
5 | <u>ک</u>
- | | | | Name of Courier (if used) | | A-CN, T-CN | | | | PLASTIC | 4000m1 | NAOH | Company | | | | | | | | | | T-CD, CR*, CU, PB, NI, AG, ZN | | | | PLASTIC | 500m1 | | UCI | H | | | | | | | | | FLON | | | | N/A | | | Relinquished by: (Signature) | ed by: | (Sign | ature) | Date | | Time | 2 - | | | FIELD PH | | | | N/N | | | | | | | • | | í | | (Signature) | | ,8002,12S | | | | PLASTIC | 2000m1 | NONE | | | • | | | | | | | | TKN, T-P | | | | PLASTIC | 500m1 | 4 | Relinquished by: (Signature) | led by: | (Sign: | ture) | Date | - | Time | 20 | Photo Programme and | | 086 | | | · | GLASS | 32oz | | | | | | | | Č | | (Signature) | | T-CR*, PB, MO*, NI, ZN | | | | PLASTIC | 500m1 | HN03 | | | | • | | | | | | |) (FLASH)(4) | | | | | | | Relinquished by: (Signature) | ied by: | (Signa | | Date | | Tirne | P | ל סוף ה | | Note: The numbered columns above cross relerence with the numbered columns in the upper right hand corner. | ross reference y | vith the number | red columns in th | ıe upper righ | t hand corne | | | \ | | | 6/18/95 | | ريم
ن ده | | C CA Call Digital (ure) | | 7 |] | ·

 -
 |)
: | | | | | - | | 1 | | | | | Taylor T | # pstate Laboratories, Inc. '34 Corporate Drive E. Syracuse New York 13057 5) 437 0255 Fax 437 1209 Chain Of Custody Record 16596057-58 | 5) 43/ 0255 | Fax 43 | Fax 437 1209 | | | | | | | | | | | | 6/27 | |--|-----------------|--------------------------|-------------------------------|----------------|---|--------------|------------------------------|----------------|----------|---------------|------|------------------------|----------|------------------------------| | ent: | | Project # / Project Name | oject Name | | | | No. | _ | _ | | | \dashv | | @ 16 · | | GENERAL SUPER PLATING | | QUAF | QUARTERLY DAY 2 | 유 | | | <u>e</u> | | | <u> </u> | | | | | | ent Contact: Pr | Phone # | Location (cit | Location (city/state) Address | S | | | Con- | —— | | | | | | Remarks | | JOHN JODOIN 4 | 446-2264 | SYR | SYRACUSE, NY | | | | tain- | | | | | | | | | mple ID | Date | Time | Matrix | Grab or Conn. | UU Internal Use Only | | ers 1) | <u>2</u>
3 | ٥ | <u>ම</u>
ව | 3 | <u>ප</u>

ඉ | 9 | | | SEWER 2 PRETREATMENT 6: | 26-61- | 18 SC . S. | H20 | | 非洲和州 | 1. Sept. | 2)
× | × | × | ·
 | | | | | | 2 PRETREATMENT | 2 | 930 | H26 | | 的建物组织 | | 0 | × | | × | | | | • | | | | | | | | | - (| _ | - | - | | | | | | | | | | ٠ | 2000年 | <i>1</i> 459 | | | | | | | | | | | | | , | | 医 | | | | | | | | • | | | | , | | | | | 新 | | ļ | | | | | 10 | | | | | | | | W. C. | | | | | | | | | | | | | | | | | 14.77.53 | | | - | | | - | | | | | , | | | | | が続き | | | | | | | | | | | 5, | | - | | | | | | | | | | | | | | | | | | が対象が | | | |
 | <u> · </u> | | | | | | | | | | | が記れ | | | | | <u> </u> | | | | | | | | | | | · 1000000000000000000000000000000000000 | | - | | | | | | | | | arameter and method | | | sample bottle: | type | size | pres. | Sampled by:(Print) | y:(Print) | | | | | Nam | Name of Courier (if used) | |) CR+6 | | | | PLASTIC | 500ml | NONE | Kcin | Keith Williams | Main | ٽ | | | | | |) A-CN T-CN | | | | PLASTIC | 4000m1 | NAOH | Company: | 1 | | | | | | | |) T-CD,CR*,CU,PB,NI,AG,ZN | | | | PLASTIC | 500m1 | HNO3 | Cc | 1 | | | | | | | |) FLOW | | | | N/A | | | Relinquished by: (Signature) | ed by: (| Signatuı | | Date | Time | Rece | Received by: (Signature) | |) FIELD PH | | | | N/A | | <u> </u> | | | ٠ | | | | | | | |

 | | | | | | | | | - | | | | | | | | | | | | | Relinquished by: (Signature) | ed by: (| Signatu | re) Date | | Time | Rece | Received by: (Signature) | | | | | | | | | | | | | | | | | |) | | | | | | | | | | - | | | | | | 0) | | | | | | | Relinquish | _d by: (| Signatu | | | Jime
J _v | Hec' | R∞'d for Lab by: (Signature) | | Note: The numbered columns above cross relerence with the numbered columns in the upper right hand corner. | cross relerence | with the numb | ered columns in t | the upper rigi | ht hand corne | | KH, 4/11 | 1./1 | | 1 | 100 | WE | 75 | Much. | pstate Laboratories, Inc. 734 Corporate Drive E. Syracuse New York 13057 15) 437 0255 Fax 437 1209 Chain Of Custody Record 8 <u>6</u> 9 | (a) | 1 04 701 | 1 1203 | | | | | | | | | ١. | 1 | | | - (| Ĺ | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | |--|--------------------|--------------------------|-------------------------------|----------------|---------------------|--|------------------------------|------------------|----------|----------|-----------------------------|---------------|----------------|---------|--------------------------|----------|---------------------------------------|---------| | GENERAL SUPER PLATING | | Project # / Project Name | | 2 | | , o | · | | ·
 | | | | | | | | |] | | | | , CO. | ליטאלובירו יאו ע | S | | 2 | | | | | | | | | | | | | | lient Contact: | Phone # | Location (cit | Location (city/state) Address | 8 | • | 20- | | | | • | | | | | | | Remarks | | | NIOGOL NHOL | 446-2264 | SYR | SYRACUSE, NY | | | tain- | | | | | | | | | | | ·. | | | ample ID | ate. | Time | Matrix | Grab or Comp. | UU Internal Use Onl | ers | 1) | 2) | <u> </u> | <u></u> | 5) | 9 | 7 | 9
9 | <u>.</u>
<u>.</u>
 | <u>=</u> | ·. | · · · · | | SEWER 2 PRETREATMENT | % 11/2 / | 9:30:50 | 1-120 | COMP | | 2 | × | | × | × | - | - | | | | | | | | SEWER 2 PRETREATMENT | 96/14/19 | 1705:11 | 1120 | • | Call Par | 1 | | × | - | | × | - | | | | | | | | | | | | | | - | | | | - | _ | | | | | · | | | | | | | , | | | लक्षा | N.P.Ge | | | · | | | | | | _ | | | | | | | | - | | | VEN | | | | - | _ | | | | | | | با | | | | | | | | 11.00 | | | | - | : | - | _ | - | | | | | | | | | | , | | V. V. | | <u> </u> | _ | <u> </u> | - | _ | | 1. | _ | | | | | | | | | | | 25,38 | | | | - | - |
 | - | | | | : | | | | | | | | | 3302 | | | | | | _ | | | | | | L | | | | ì | | | | क सम | | | | | ' | | _ | | | | | | | | , | - | | | | 314 | | | | | <u> </u> | - | - | _ | - | | | | | | | , | | | 建筑建筑 | - | | | | _ | | - | | | | | | | | arameter and method | | | sample bottle: | type | size pres. | Sampled by:(Print) | led by | y:(Pri | 3 | > | • | > | | | z |) eur | Name of Courier (if used) | | |) CR+6 | | | | PLASTIC | 500ml NONE | M. Craw tor | \geq | $\frac{1}{2}$ | آع | <u> </u> | <i>م</i> و
م | 7 | , | | | | | | |) A-CN, T-CN | | | | PLASTIC | 4000ml NAOH | Comp | any: | - | - | - | | ` | | | | | | • | |) T-CD, CR+, CU, PB, NI, AG, ZN | | | | PLASTIC | 500m1 HN03 | - | | 15 | 1 | 1- | ╣` | | - | | - | | | | |) FLOW | | | | ·N/A | | Relinquished by: (Signature) | quish | ed by | c (Sig | natur | | Date | | Time . | | ∞еіи | Received by: (Signature) | | |) FIELD PH | | | | N/A | | 1 | | | | | | | | | | | | | | Ü | | | | | | - | | | | | - | | _ | | | | | | | 9 | | | | | | Relin | Relinquished by: (Signature) | 6d p | : (Sig | natur | | Date | - = | Time | -R | ≿eiv(| Received by: (Signature) | l | | ٦ | | | - | | | <u>.i</u> | | | | | | | | | | | | | | 7 | | | | | | - | | | | | _ | | - | | | | | | | 0) | | | | | | Relinquished by: (Signature) Data Time | quish | > <mark>%</mark> | ; (Si | | <u>ق</u>
اد د |)ale
_//// | <u>-</u> | و القار | | κ'd i | Rec'd for Lab by: (Signature) | J | | Note: The numbered columns above cross relerence with the numbered columns in the upper right hand corner. | ve cross reference | with the numb | ered columns in | the upper rigi | nt hand corner. | <u> </u> | 5 | 5 | 2 | 2 | | 1'' | \bar{z} | ر م | ` | ر
ا | (Majack) | | ### Attachment 2 Quarterly Certified Equipment Calibration Summary July 29, 1996 ## General Super Plating Co. 22 Celi Drive E. Syracuse NY 13057 Atm: Mr. John Jodin Re: Service Report for Celi Dr. Digital Analysis Corp Mr. Jodin, The following roport details work done and observations made during our scheduled service call on June 17, 1996. The intent of the service call was to verify the integrity of the pertinent instrumentation and their calibration. Please refer to the enclosed check list for detailed information. The first stage neutralization tank (N1) pH probe was found to be clean and only slightly offset from proper calibration. This probe was calibrated and returned to service. The second stage neutralization pH probe was found to be clean and only slightly offset from proper calibration. This probe was recalibrated and returned to service. The chrome destruct pH probe was found to be clean with a slight offset from proper calibration. This probe calibrated fine and was returned to service. The chrome destruct ORP probe was found to be clean and in good operating condition. The calibration was verified and the probe was returned to service. The final effluent pH probe was found to be dirty but in good condition. The pH probe was cleaned, calibrated and returned to service. The final effluent controller/monitor was inspected electronically and found to be in good working condition. The final effluent flow sensor, recorder and indicator were thoroughly inspected and calibrated. The final pH and flow recorder pens had no offset. All instrumentation was determined to be in fine working order and met the individual
manufacturers original specifications. If I can be of any further assistance then please do not hesitate to call. Cordially, Robert S. Laws **Project Coordinator** | | OPM E · FOI IIDMENT | CALIBRATION SUMM | ARY | | |---|---------------------------|--|-------|-------------------| | | General Super Plating | Syracuse N.Y. | | | | INSTRUMENT# | DATE OF | RESULTS | SIGNA | TURE AND TITLE | | DESCRIPTION | CALIBRATION | (INCLUDING DRIFT) | OF RE | PRESENTATIVE | | pH Neutralization Stage 1 (Jenco 3671) | June 17, 19 96 | Calibration within Spec. | 50% | Technician | | pH Neutralization
Stage 2 (Jenco 3676) | June 17, 1996 | Calibration within Spec. | | //
Technician | | pH Chrome Destruct
(Jenco 3676) | June 17, 1996 | Calibration within Spec. | | / /
Technician | | ORP Chrome Destruct (Jenco 3671) | June 17, 1996 | Calibration within Spec. | | / /
Technician | | Final pH Adjustment
(Walchem W230) | June 17, 1996 | Calibration within Spec. | | //
Technician | | Final pH Recorder Honeywell | June 17, 1996 | Calibration within Spec.
@7pH=-0.05,@10pH=+0.05 | | Technician | | Final Flow Monitor Militronics | June 17, 1996 | Calibration within Spec. | | Jechnician / | | Final Flow Recorder Honeywell | June 17, 1996 | Calibration within Spec. | 5/ | Technician | | i ione) wes | | | | | | | | | | | | | | | | | | , | | | | · | | | | | | | | | | | | | | | | | | | # Digital Analysis Corp. Service Check List for General Super Plate Waste Treatment System | 5.4. | 6/17/96 | · | Tech / F | ing. 7.51. | |-------------|---------|---|----------|------------| | Date | 0///// | • | ` I . | | | | | • | | | ### Celi Drive: # Neutralization Stage I pH (N1): Jenco pH Controller: | Probe inspection | | GOOD/ Clear | red. | |--|-----------------|-------------|----------| | Before Calibration | 7.0 | 6.7 | - | | 4.0 | 10=0 | 3.7 | <u> </u> | | After Calibration | 4.0 | 4.0 | _ | | 1 | 7.0 | 7.0 | | | | 10.0 | - | * | | Response Time (/ 3) Max acceptable response | pH dev) | 3 sec. | - | | war acceptante test | - PERIO | *** | | | Neutralization Stage II pH (N2): Great Lakes pH Controller: | | |--|---------------------------------------| | Probe inspection Good / Clena | d. | | Before Calibration 7.0 609 | ' | | 10.0 9.8 | - . | | After Calibration 4.0 | . · | | 7.0 7.0 | · · · · · · · · · · · · · · · · · · · | | 10.0 10.0 | - | | Response Time (/ 3pH dev) 3 5cc. Max acceptable response = 10 seconds. | - . | | | | | Chrome Destruct ph : | | | Great Lakes pH Controller: | Š | | Probe inspection Good / Cleane | <u>'</u> | | Before Calibration 4.0 3.9 | • | | 7.0 6.87 | - | | After Calibration 4.0 4.0 | • | | 7.0 <u>7.0</u> | • | | Response Time (/ 3pH dev) $33eC$. Max acceptable response = 10 seconds. | • | | ORP-21 - Jenco ORP Transmitter : | | | Probe inspection <u>Good/CleA</u> | \mathcal{J}_{-} | | Before Calibration 4.0 (98mv) 100 | | | 7.0 (268mv) <u>250</u> | | | After Calibration 4.0 (98mv) | | | 7:0 (268mv) | | Pinal pH: Honeywell Circular Chart Recorder: Walchem pH controller Probe inspection Before Calibration 7.0 6.98 10.0 9.8 After Calibration 4.0 7.0 2.0 10.0 10.0 Response Time (/ 3pH dev) 3sec. Max acceptable response = 10 seconds. Flow pen deviation +- 3apm Honeywell Recorder 0 ph offset. # G SP ### GENERAL SUPER PLATING CO., INC. 5762 CELI DRIVE EAST SYRACUSE, NEW YORK 13057 (315) 446-2264 FAX (315) 446-4419 June 17, 1996 John Fazzolari County of Onondaga Department of Drainage and Sanitation 650 Hiawatha Boulevard West Svracuse, NY 13204-1194 Re: Follow-up to Telephone Conference (June 12, 1996) Dear Mr. Fazzolari The following is a follow-up to your phone conference with Jean Jodoin from our office on Wednesday, June 12, 1996: During our quarterly sampling of Sewer #1 (our sanitary sewer), the continuous pH monitor recorded a pH exceedence. The exceedence, a pH of 5.2 Standard Units, occurred at approximately 3:00 a.m. on June 12,1996 and had a duration of less than 2 minutes. Enclosed is a copy of the section of the chart where the isolated incident occurred. The short duration of the exceedence could indicate a possible equipment malfunction or interference. Please call if we can provide any further clarification. Sincerely, William "Woody" Southwell VP/General Manager c. J. Jodoin D. Simmons Sewer # 1 June 1 - h to June 12 th 1996 Time 3AM PH 5.2 5 U. Duration <2 minutes | | | | | | | · | |----------|-----------|--|-----------|---------------------|--|----------| = : <u>' </u> | | | | | = | | | | <u> </u> | + | 1 | - 1-0: - | | - - - - - - - - - - | | | | | | | ··(-((-:- | C = C = C | =(-(-(:-(| ;-(-(- (-(-(| -c | | Date 6/11/96 Scale 5.5-39.3 9.5-67.9 Inst. PH-8.5 S.U. Scale 55-393 95-67.9 Inst PH: BB SU. Date: 6/13/96 Scale: 5.5-39.3 9.5-67-9 Octo 6/14/96 Scale: 5.5 - 39.3 9-5 - 67.9 Inst. PH: 8.4 S.W. Oato 6/24/96 Scale 55-39.3 9.5-67.9 Inst. PH - 8.3 S.W. Date 6/25/96 Scale 5.5 - 39.3 9.5 - 67.9 Scale 5.5-39.3 9.5-67.9 Inst PH 85 SU. Date 6/27/96 Scalo 5.5-39.3 9.5-67.9 Inst. PH 8.5 Su. ### Attachment 1 Quarterly Laboratory Analysis Reports from ULI June 12 - 14 (Sewer 2) June 25 - 28 (Sewer 1) June 25 - 28 (Sewer 2) Semi-Annual Laboratory Analysis Report from ULI (Sewer 2) June 12 # DEPARTMENT OF DRAINAGE AND SANITATION 650 HIAWATHA BOULEVARD, WEST SYRACUSE, NEW YORK 13204-1194 478-3755 - 425-2260 JOHN H. MULROY COUNTY EXECUTIVE JOHN M. KARANIK ### ONONDAGA COUNTY INDUSTRIAL WASTEWATER DISCHARGE PERMIT | PERMIT NUMBER : 11 | DATE ISSUED : January 1, 1988 | |---|---| | INDUSTRIAL CODE: 129 | EXPIRATION DATE: January 1, 1989 | | sic : 3471 | | | | 01, of the Rules and Regulations Relating
System issued by the County of Onondaga
tion, | | | Plating Company, Inc. | | · | to discharge industrial wastewater from | | 6608 Joy Road Syracı | | | ADDRESS OF COMPANY FACILITY | DISCHARGING WASTEWATER | | to the <u>Metropolitan Syracuse Wast</u>
NAME OF RECEI | ewater Treatment Facility VING TREATMENT PLANT | | in accordance with the following c | · | ### I. PERMITTED WASTEWATER DISCHARGE The permittee is authorized to discharge the following to the county sewer system: - 1. Sanitary Wastewater - 2. Shielding and Electroless Plating Process wastewater which has been treated to comply with pretreatment standards specified in this permit. ### II. PROHIBITED DISCHARGES The following shall not be introduced into the county system: - (a) Wastes which create a fire or explosion hazard in the wastewater treatment plant. - (b) Wastes which have a pH lower than 5.5 or higher than 9.5. - (c) Solid or viscous wastes in amounts which would cause an obstruction to the flow in sewers, or other interferences with the proper operation of the wastewater treatment plant. - (d) Wastes at a flow rate and/or pollutant discharge rate which is excessive over relatively short time periods creating a treatment process upset and subsequent loss of treatment efficiency. - (e) Wastes which are prohibited in Article III of the Rules and Regulations. ### III. EFFLUENT LIMITATIONS AND PRETREATMENT STANDARDS The wastewater discharge of the permittee shall comply with the following effluent limitations and pretreatment standards. Section 3.08 of the Onondaga County Rules and Regulations requires the permittee to comply with USEPA pretreatment standards if they are more stringent than county effluent limitations. (A) USEPA 40 CFR Part 433 Metal Finishing Pretreatment Standards for New Sources: | PARAMETERS | DISCHARGE LIMITATIONS | | |-----------------------|-----------------------|--------------------------------| | | DAILY MAXIMUM (mg/l) | MAXIMUM MONTHLY AVERAGE (mg/l) | | Cadmium (Cd) | 0.11 | 0.07 | | Chromium (Cr) | 2.77 | 1.71 | | Copper (Cu) | 3.38 | 2.07 | | Lead (Pb) | 0.69 | 0.43 | | Nickel (Ni) | 3.98 | 2.38 | | Silver (Ag) | 0.43 | 0.24 | | Zinc (Zn) | 2.61 | 1.48 | | Cyanide, Total (CN-T) | 1.20 | 0.65 | | Total Toxic Organics# | 2.13 | , | #Total toxic organics is defined by the County as Control Authority to be the sum of the following pollutants: | Methylene Chloride | Tetrachloroethylene | |-----------------------|----------------------| | 1,2 Dichloroethane | Freon | | Chloroform | Carbon Tetrachloride | | 1,1,1 Trichloroethane | Benzene | | 1,1,2 Trichloroethane | Toluene | | Trichloroethylene | Xylenes | | | - • | ### III. EFFLUENT LIMITATIONS AND PRETREATMENT STANDARDS (continued) (B) Onondaga County Effluent Limitations at the point of discharge to the County sewer system. | <u>PARAMETERS</u> | DISCHARGE INSTANTANEOUS (1) ALLOWABLE (mg/1) | LIMITATIONS DAILY (2) ALLOWABLE (mg/l) | |-----------------------|--|--| | Cadmium (Cd) | 3.0 | 2.0 | | Chromium, Total (Cr) | 12.0 | 8.0 | | Copper (Cu) | 7.5 | 5.0 | | Cyanide, Total (CN-T) | 3.0 | 2.0 | | Lead (Pb) | 1.5 | 1.0 | | Nickel (Ni) | 7.5 | 5.0 | | Silver (Ag) | 1.5 | 1.0 | | Zinc (Zn) | 7.5 | 5.0 | - (1) As determined by a grab sample taken of the permittee discharge at any time during the daily operational and/or production period. - (2) As determined by a composite sample taken of the permittee daily discharge over the operational and/or production
period. ### IV. NOTICE OF NON-COMPLIANCE In the event the permittee is unable to comply with any effluent limitation or pretreatment standard specified in this permit due to: - (1) Breakdown of industrial waste pretreatment equipment; - (2) Accident caused by human error or negligence, mechanical failure; or, - (3) Other causes, such as acts of nature; the permittee shall notify the operator of the receiving treatment plant immediately by telephone (478-3755 between the hours of 8:00 am-4:30 pm and 425-3142 or 478-4856 between the hours of 4:30 pm-8:00 am) so the necessary steps can be taken to prevent damage to the wastewater treatment process and equipment. In accordance with Article IV, Section 4:10, of the Rules and Regulations, the Commissioner shall be notified in writing within five (5) days and shall be informed of the following pertinent information: - Cause of noncompliance; - (2) A description of the noncomplying discharge; - (3) Anticipated time the condition of noncompliance is expected to continue, or if such condition has been corrected, the duration of the period of noncompliance; - (4) Steps taken by the permittee to reduce and eliminate the noncomplying discharge; and, - (5) Steps to be taken by the permittee to prevent recurrence of the condition of noncompliance. Nothing in this permit shall be construed to relieve the permittee from the penalties for noncompliance with this permit pursuant to Article VII-Enforcement and Penalties of the Rules and Regulations Relating to the Use of the Public Sewer System. ### V. CHANGE IN WASTEWATER DISCHARGE All discharges authorized herein shall comply with the terms and conditions of this permit. Any industrial facility expansions, production increases or process modifications which result in new, different or increased discharges of pollutants must be reported by submission of a new industrial waste disposal questionnaire pursuant to Article IV, Section 4.02, of the Rules and Regulations. This permit may be modified to specify and limit any pollutants not previously limited. The discharges of any pollutant more frequently than, or at a level in excess of that specified and authorized by this permit, shall constitute a violation of the terms and conditions of this permit. ### VI. COUNTY MONITORING The monitoring of each industrial discharge and the recording of quantitative values shall be performed by authorized employees or representatives of the county according to schedules established by the Commissioner. Composite samples will be collected whenever possible over the production day including clean-up periods. The flow (in gallons per day) shall be measured during each sampling period. If flow measurement is not practicable, water use records may be substituted in place of flow measurement. Additional sampling and flow measurement may be performed by the permittee using approved methods. The data obtained by the permittee may be used at the discretion of the Commissioner as supplemental data to show compliance with permit effluent limitations and pretreatment standards or to be used in addition to county data for computations of the Industrial Waste Surcharge. All analyses shall be performed in accordance with approved USEPA analytical methods (40 CFR 136) as stated in the latest edition of the following references: STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16th Edition, 1985, American Public Health Association, New York, New York 10019. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES, Environmental Monitoring and Support Laboratory, Office of Research and Development, March 1983, Environmental Protection Agency, Cincinnati, Ohio 45268. The sampling schedule cited below shall become effective the day this permit is issued. | DISCHARGE LOCATION Sewer #1 Pretreatment | PARAMETERS Biochemical Oxygen Demand (BOD) | MINIMUM FREQUENCY OF ANALYSIS 16 times/year | TYPE OF <u>SAMPLE</u>
Composite | |--|--|---|------------------------------------| | Plant
Outfall | Total Suspended
Solids (TSS) | 16 times/year | Composite | | | Total Phosphorus (TP) | <pre>16 times/year</pre> | Composite | | | PH | 16 times/year | Composite | | | Cadmium (Cd) | 16 times/year | Composite | | | Chromium (Cr) | <pre>16 times/year</pre> | Composite | | | Copper (Cu) | 16 times/year | Composite | | ÷ | Total Cyanide (CN-T) | 16 times/year | Composite | | | Lead (Pb) | <pre>16 times/year</pre> | Composite | | | Nickel (Ni) | 16 times/year | Composite | | | Silver (Ag) | 16 times/year | Composite | | | Zinc (Zn) | 16 times/year | Composite | | | Total Toxic Organics (TTO) | once/year | Grab | ### VII. PERMIT MODIFICATIONS After sufficient notice to the permittee, this permit may be modified, suspended, or revoked in whole or part during its term for causes including, but not limited to, the following: - (a) Violation of any terms or conditions of this permit. - (b) A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge. - (c) A toxic effluent standard being established under any state or federal law for a toxic pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit. - (d) Failure to make payments of the Industrial Waste Surcharge. ### VIII. RIGHT OF ENTRY The permittee shall allow duly authorized employees or representatives of the county to enter the permittee's premises for the purpose of inspection, observation, flow measurement, sampling and testing in accordance with Article IV, Section 4.08, of the Rules and Regulations. ### IX TRANSFER OF OWNERSHIP CONTROL In the event of any change in the ownership of the Industrial Facilities from which the authorized discharges emanate, the permittee shall notify the succeeding owner or controller of the existence of this permit by letter, a copy of which shall be forwarded to the Commissioner. ### X. PRETREATMENT FACILITIES The permittee shall provide and maintain, at its expense, pretreatment of industrial wastewaters when required by the Commissioner pursuant to Article IV, Section 4.09, of the Rules and Regulations. All reports, plans and/or specifications for new or modified pretreatment facilities or changes in method of operation must be approved by the Commissioner or his designee. ### XI. WASTE MATERIAL DISPOSAL Any screening, sludge, solids, waste oils, or other waste materials removed or separated from the permittee's authorized discharge shall be disposed of in such a manner as to prevent entry of such materials into navigable waters or into the wastewater treatment system. During the months of June and December of each year the following data regarding the disposal of pretreatment process sludge shall be reported to the County of Onondaga: - (a) The source of materials to be disposed of. - (b) The approximate volumes and weights. - (c) The method by which they were removed and transported. - (d) The company contracted to remove such materials. - (e) The final disposal or recovery location. ### XII. MONITORING FACILITIES If, in the opinion of the Commissioner, there are inadequate provisions for the collection of representative samples and accurate flow measurements, the Commissioner can require, in accordance with Article IV, Section 4.07, of the Rules and Regulations, that a monitoring facility consisting of a sampling manhole with a flow measuring device be installed by the permittee at its expense. This monitoring facility shall be approved by the Commissioner before installation. The permittee shall be responsible for all maintenance of the sampling manhole and calibration of the monitoring equipment. ### XIII. SCHEDULE OF COMPLIANCE The permittee shall comply with the following schedule: (a) By January 1, 1988 the permittee shall be in compliance with the County effluent limitations and USEPA 40 CFR Part 433 Metal Finishing Pretreatment Standards detailed on pages 3 and 4 of this permit. Failure to meet this date may result in this office proceeding with the legal action necessary to ensure compliance including the assessment of fines and/or penalties prescribed in Article VII of the Onondaga County Rules and Regulations Relating to the Use of the Public Sewer System. ### XIV. COMPUTATION AND PAYMENTS OF INDUSTRIAL WASTE SURCHARGE The permittee shall pay its proportionate share of the cost of operation and maintenance and local debt retirement of the treatment system. These charges shall be computed by the Commissioner using the formulae in Article V, Section 5.02, of the Onondaga County Rules and Regulations. Payments shall be made to the County of Onondaga by the permittee no less often than annually. If there is a substantial change in the wastewater characteristics and/or flow rate introduced into the County Treatment Plant by the permittee, the industrial surcharge shall be adjusted accordingly. ### XV. PERMITTEE SELF-MONITORING AND REPORTING REQUIREMENTS In accordance with 40 CFR 403.12(e), the permittee shall submit a Periodic Report to the county during the months of June and December of each year. Detailed herein are reporting requirements for the permittee subject to the Metal Finishing Pretreatment Standards (40 CFR Part 433). Failure to submit the Periodic Report shall subject the industrial user to the fines and penalties proscribed under Article VII of the Onondaga County Rules and Regulations Relating to the Use of the Public Sewer System. The permittee must submit a Periodic Report which shall comply with and include the following: - 1. A listing of the nature and concentration of all regulated pollutants in the facility's regulated process waste streams. - a. Each sample must be analyzed for all regulated pollutants detailed under Section III on pages 3 and 4 of this permit. - b. The
sampling and analytical data submitted shall consist of self-monitoring data for the regulated process waste stream. - c. Samples shall be collected for three (3) consecutive days typical of normal production. - d. Samples shall be collected in accordance with the methods outlined in the regulations. Note that the sample interval for composite samples must not exceed a frequency of one sample every thirty (30) minutes. - e. All analyses must be performed by a NYSDOH certified laboratory. - 2. A summary of the daily flow rates for the regulated process waste streams including both the average and maximum flow rate for each sampling period. ### XV. PERMITTEE SELF-MONITORING AND REPORTING REQUIREMENTS (continued) - 3. A summary of the results of quarterly equipment calibration checks for the pH metering/recording device for each regulated process wastestream. The June Periodic Report shall contain March and June equipment calibration checks. The December Periodic Report shall contain the September and December equipment calibration checks. - 4. A summary of the methods used by the permittee to sample and analyze the data and a certification that these methods conform to the outlined in the regulations. - 5. A statement that compliance with all applicable standards is consistently achieved. If compliance is not consistently achieved, the report must include a statement as to what additional operation and maintenance and/or pretreatment equipment is necessary to achieve compliance. - The report must include data on sampling and analysis for the toxic organic compounds listed in the federal regulations. If the permittee wishes to certify that the facility does not discharge toxic organics, an industrial toxic pollutant management plan must be approved by the Commissioner. The elements which must be addressed and submitted are detailed on page 11, Section XVI, of this permit. - 7. The report must be signed by an authorized representative of the permittee. ### **GENERAL SUPER PLATING CO., INC.** 22 CELI DRIVE EAST SYRACUSE, NEW YORK 13057 (315) 446-2264 FAX (315) 446-4419 November 25, 1992 Mr. Joseph Mastriano County of Onondaga Department of Drainage and Sanitation 650 Hiawatha Boulevard, West Syracuse, New York 13204-1194 Re: Monthly Self-Monotoring Report General Super Plating Company, Inc. Wastewater Discharge Permit #11 6606 Joy Road Dear Mr. Mastriano: Enclosed please find a completed Self-Monitoring Report for the month of October 1992 for our General Super Plating Company, Inc. facility located at 6606 Joy Road in East Syracuse, New York. As required by the Onondaga County Department of Drainage and Sanitation, the completed report consist of the following items: o Form A: Analytical Data for Sewer #1 o Form A1: Analytical Data for Sewer #3 o Form C : Water use Data for Sewer #1 o Form D: Water use Data for Sewer #3 o Form F : Equipment Calibration Summary If you have any questions or comments on this report, please contact me at 446-2264. Sincerely, Rodney Campbell Environmental Coordinator # G.S.P. (Joy Rd.) Co. Inc. Self Monitoring Report | Period Covere | ed: Octobe | er 1, 1992 th | rough Octobe | er 31, 1992 | | |--|-----------------|--------------------------|------------------|-----------------------------|-------------------------| | | | | | tted: November | 25, 1992 | | | | | | posite (Y/N): | | | , 0 | _ | • | | (Y/N): <u>Y</u> | | | | | • | | nitoring Repor | | | | | | | | | | Do Analytical | Methods Co | nform to USEPA | Methodologies | (Y/N): <u>Y</u> | | | | | | | Methods for | - | | | | | | | | | - | of water | and waste wat | er 16th Ed. | • • • | | | Weter Head | During Popo | orting Period (galle | one): 5 | 04.598 | | | | | Meter Readin | | | | | | | | | | | | | | imed but not Disc | | | | | • | | | | Boiler Make-Up: | | | | Evapo | ration: $\frac{7,395}{}$ | | SPDES: | 0 | | | Off-Sit | e Disposal: | Othe | r (specify): None | e | | Number of Op | perating Days | 3: 22 | Numi | ber of Employees: | 25 | | | | | | //N): <u> </u> | | | | | onal sheets for ex | • | | | | , , , , , , , , , , , , , , , , , , , | . ¯ | | | | | | Certification: | "I cartify unde | er negality of law t | that this docume | ent and its attachn | nents were prepared | | , | | | | | designed to assure | | | _ | | | | ormation submitted. | | | • | • | - - | | n, or those persons | | | | • | | | n submitted is, to the | | | • • | = | = | | am aware that there | | | " | - | | | the possibility of fine | | | • | ment for knowing | - | , , | | | | • | • | | | | | | Signat | ure of Preparer: | Kollnes | H Sinds | | | | , | · | | Campbell nental Coordinates | ator | | | Title: | | 1114 TT OIII | .c.rcar coordana | ~ | | Form A: Analytical Data for Sewer #1 (Process Wastewater) | | | | | | | | | |---|---------------------------------|---------------------------|--------------------------------|---------------------------|---------------------------------|---------------------------------|---------------------------------|------| | Parameter | Daily
Effluent
Limitation | Day 1
Date:
October | Day 2
Date:
October
6 | Day 3
Date:
October | Day 1
Date:
October
19 | Day 2
Date:
October
20 | Day 3
Date:
October
21 | Avg. | | Cd (mg/l) | .11 | .03 | .07 | .06_ | .04 | .03 | .04 | .05 | | Cr (mg/l) | 2.77 | .6 | .6 | .8 | 7 | .6 | .6 | .65 | | Cu (mg/l) | 3.38 | 1.1 | 1.3 | 1.4 | 1.0 | 1.4 | .8 | 1.17 | | T-CN (mg/l) | 1.20 | .03 | .04 | .03 | .03 | .02 | .03 | .03 | | Pb (mg/l) | .69 | .1 | .1 | .1 | .1 | .1 | .1 | .1 - | | Ni (mg/l) | 3.98 | 1.6 | 1.8 | 2.1 | 1.4 | 1.7 | 2.0 | 1.77 | | Ag (mg/l) | .43 | .01 | .02 | .01 | .01 | .01 | .02 | .01 | | Zn (mg/l) | 2.61 | .02 | .04 | .05 | .02 | .02 | .04 | .03 | | pH (S.U.) | 5.5 - 9.5 | 7.4 | 7.4 | 7.5 | 7.2 | 7.3 | 7.1 | N/A | | TTO's (mg/l) | 2.13 | N/A ^{**} Attach official independent laboratory (must be NYSDOH ceritified) results for the months of March, June, September and December as required in Section XV, Part 2 of Permit #11. | Form A1: Analytical Data for Sewer #3 (Segregated Groundwater) | | | | | | | | | |--|---------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|------| | Parameter • | Daily
Effluent
Limitation | Day 1 Date: | Dáy 2 Date: | Day 3 Date: | Day 1 Date: | Day 2 Date: | Day 3 Date: | Avg. | | | | 5 | 6 | 7 | 19 | 20 . | 21 | | | Cr (mg/l) | 2.77 | .1 | . 2 | .1 | .1 | .1 | .1 | .12 | | Cu (mg/l) | 3.38 | .2 | .2 | .1 | .1 | .1 | .1 | .13 | ^{**} Attach official independent laboratory (must be NYSDOH ceritified) results for the months of March, June, September and December as required in Section XV, Part 2 of Permit #11. | F | orm C: Water Use Data for the | Month of OCTOBER | for Sewer #1 | |------|-------------------------------|------------------------|--------------------| | Date | Wastewater Discharged (gal) | #.of Production hours. | Avg Flowrate (gph) | | 1 · | 27,868 | 10 | 2,787 | | 2 | 32,585 | 13 | 2,507 | | 3 | NO | PRODUCTION | | | 4 | NO . | PRODUCTION | , | | 5 | 36,095 | 12 | 3,008 | | 6 | 28,110 | 11 | 2,555 | | . 7 | 23,130 | 11 | 2,103 | | · 8 | . 22,266 | 10 | 2,227 | | 9 | 28,739 | 12 | 2,395 | | 10 | NO | PRODUCTION | | | 11 | NO | PRODUCTION | | | 12 | 24,318 | 11 | 2,211 | | 13 | 23,110 | 11 | 2,101 | | 14 | 17,651 | 10 | 1,765 | | 15 | 19,629 | 10 | 1,963 | | 16 | 22,584 | 12 | 1,883 | | 17 | NO | PRODUCTION | | | 18 | NO | PRODUCTION | | | 19 | 15,540 | 10 | 1,554 | | 20 | 20,702 | 11 | 1,882 | | 21 | 20,052 | . 11 | 1,823 | | 22 | 16,383 | 10 | 1,638 | | 23 | 23,749 | 12 | 1,979 | | 24 | МО | PRODUCTION | | | 25 | NO | PRODUCTION | | | 26 | 22,340 | 11 | 2,031 | | 27 | 20,957 | 11 | 1,905 | | 28 | 22,400 | . 11 | 2,036 | | 29 | 15,973 | 9 | 1,775 | | 30 | 20,417 | 12 | 1,701 | | 31 | NO | PRODUCTION | · | | F | orm D: Water Use Data for the | Month of OCTOBER | for Sewer #3 | |------|-------------------------------|-----------------------|---| | Date | Wastewater Discharged (gal) | # of Production hours | Avg Flowrate (gph) | | 1 | 3,000 | 2.5 | 1,200 | | 2 | 3,000 | 2.5 | 1,200 | | 3 | 3,000 | 2.5 | 1,200 | | 4 | NO | PRODUCTION | | | 5 | 3,000 | 2.5 | 1,200 | | 6 | 3,600 | 3.0 | 1,200 | | 7 | 900 | 1.0 | 900 | | 8 | NO | PRODUCTION | | | 9 | NO | PRODUCTION | | | 10 | NO | PRODUCTION | | | 11 · | NO | PRODUCTION | | | 12 | 3,000 | 2.5 | 1,200 | | 13 | 3,000 | 2.5 | 1,200 | | 14 | 3,000 | 2.5 | 1,200 | | 15 | NO | PRODUCTION | | | 16 | NO | PRODUCTION | , | | 17 | NO | PRODUCTION | | | 18 | NO | PRODUCTION | | | 19 | 3,000 | 2.5 | 1,200 | | 20 | 3,000 | 2.5 | 1,200 | | 21 | 3,000 | 2:5 | 1,200 | | 22 | NO | PRODUCTION | | | 23 | NO | PRODUCTION | | | 24 | NO | PRODUCTION | | | 25 | NO | PRODUCTION | | | 26 | 3,000 | 2.5 | 1,200 | | 27 | 3,000 | 2.5 | 1,200 | | 28 | 3,000 | 2.5 | 1,200 | | 29 | NO | PRODUCTION | | | 30 | NO | PRODUCTION | | | 31 | NO | PRODUCTION | | | Form F: Equipment Calibration Summary | | | | | | | |---------------------------------------|------------------------|------------------------------|---|--|--|--| | Instrument
#/Description | Date of
Calibration | Results
(Including Drift) | Signature and Title of Representative | | | | | pH N-1 | 10-1-92 | 7=6.9 4-10=3.9-9.8 | Rodney J. Campbell
Environmental Coordinator | | | | | N-2 | 10-1-92 | 7=7.0 4-10=3.9-10.0 | Rodney J. Campbell
Environmental Coordinator | | | | | Final | 10-1-92 | 7=6.9 4-10=3.8-9.8 | Rodney J. Campbell
Environmental Coordinator | | | | | Chrome | 10-1-92 | 7=6.8 4-10=3.8-9.7 | Rodney J. Campbell
Environmental Coordinator | - | | | | | | | | |
| · | | | | | | | | | | | | | | | #### GENERAL SUPER PLATING CO., INC. 22 CËLI DRIVE EAST SYRACUSE, NEW YORK 13057 (315) 446-2264 FAX (315) 446-4419 March 30, 1993 Mr. Joseph Mastriano County of Onondaga Department of Drainage and Sanitation 650 Hiawatha Boulevard, West Syracuse, New York 13204-1194 Re: Monthly Self-Monitoring Report General Super Plating Cmpany, Inc. Wastewater Discharge Permit #11 6606 Joy Road Dear Mr. Mastriano: Eclosed please find a completed Self-Monitoring Report for the month of February 1993 for our General Super Plating Company, Inc. facility located at 6606 Joy Road in East Syracuse, New York. As required by the Onondaga County Department of Drainage and Sanitation, the completed report consist of the following items: - o Form A: Analytical Data for Sewer #1 - o Form A1: Analytical Data for Sewer #3 - o Form C: Water use Data for Sewer #1 - Form D: Water use Data for Sewer #3 - o Form E: Waste Material Disposal Summary (with accompanying manifests) - o Form F: Equipment Calbration Summary If you have any questions or comments on this report, please contact me at 446-2264. Sincerely, Rodney Campbell Environmental Coordinator MEMBER NATIONAL ASSOCIATION OF METAL FINISHERS AMERICAN SOCIETY OF ELECTROPLATED PLASTICS. INC. AMERICAN ELECTROPLATERS & SURFACE FINISHERS SOCIETY # G.S.P. (Joy Rd.) Co. Inc. Self Monitoring Report | Period Cover | red: Febru | ary 1, 1993 | through Feb | ruary 28, 19 | 9'3 | |----------------|---|--|---|--|--| | | | 1, 1993 | | | | | | | Grab (Y/N): | | | | | | • | Preservation Tec | | | | | | • | Explain: See | Discharge M | onitoring Re | port | | , | | | | | | | Do Analytica | Methods Co | nform to USEPA | Methodologies | s (Y/N):Y | | | | Explain: In | accordance wi | th Standard | Methods for | evaluation | | | | | 1 C | | | | | of water | r and waste w | ater 16th E | <u>a.</u> | · · · · · · · · · · · · · · · · · · · | | Water Usage | During Repo | rting Period (galle | ons): | 350,644 | | | | | Meter Re | | | | | | | med but not Disc | _ | | | | | | , | | _ Boiler Make | -Up: | | • | | ration: <u>6,38</u> | | | | | | • | | | | _None | | Number of C | | | | | ees:15 | | | | Show Consisten | | | | | | | onal sheets for ex | | | | | (11 140, | | Julia Sulcets 101 02 | Apidi Idiioi ij | , | | | Certification: | under my dir
that qualified
Based on m
directly respo
best of my kn
are significan | ection or supervision or supervision or supervision property of the o | sion in accordaterly gather and persons who in the information of | ance with a system of evaluate the manage the systion, the informate, and complete | achments were prepared tem designed to assure information submitted stem, or those persons ation submitted is, to the te. I am aware that there ding the possibility of fine | | | | ure of Preparer: | Rodney | _ <u>/amplill</u>
J. Campbell | / | | • | Title: | | FUATION | mental Coord | LHATOF | | Form A: Analytical Data for Sewer #1 (Process Wastewater) | | | | | | | | | |---|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|------| | Parameter | Daily
Effluent | Day 1
Date: | Day 2
Date: | Day 3
Date: | Day 1
Date: | Day 2
Date: | Day 3
Date: | Avg. | | | Limitation | Feb. | Feb. | Feb. | Feb. | Feb. | Feb.
18 | | | Cd (mg/l) | .11 | .05 | .03 | .06 | .03 | .03 | .05 | .04 | | Cr (mg/l) | 2.77 | .1 | . 3 | .3 | . 2 | 1.1 | .1 | .35 | | Cu (mg/l) | 3.38 | . 4 | .3 | . 2 | .1 | 1.3 | .3 | .43 | | T-CN (mg/l) | 1.20 | .03 | .03 | .04 | .02 | .03 | .05 | .03 | | Pb (mg/l) | .69 | .1 | .1 | .1 | .1 | .1 | .1 | .1 | | Ni (mg/l) | 3.98 | .1 | .1 | .1 | .9 | 1.3 | .5 | .5 | | Ag (mg/l) | .43 | .02 | .02 | .01 | .03 | .01 | 02 | .02 | | Zn (mg/l) | 2.61 | .01 | .03 | .03 | .04 | .02 | .03 | .03 | | pH (S.U.) | 5.5 - 9.5 | 8.0 | 7.5 | 7.7 | 7.6 | 7.8 | 8.0 | N/A | | TTO's (mg/l) | 2.13 | N/A ^{**} Attach official independent laboratory (must be NYSDOH ceritified) results for the months of March, June, September and December as required in Section XV, Part 2 of Permit #11. | Form A1: Analytical Data for Sewer #3 (Segregated Groundwater) | | | | | | | | | |--|---------------------------------|-------------|----------------|----------------|----------------|----------------|----------------|------| | Parameter | Daily
Effluent
Limitation | Day 1 Date: | Day 2
Date: | Day 3
Date: | Day 1
Date: | Day 2
Date: | Day 3
Date: | Avg. | | , | | 1 | 2 | 3 | 16 | 17 | 18 | | | Cr (mg/l) | 2.77 | ./ | , / | ,1 | .4 | . 3 | . 4 | .25 | | Cu (mg/l) | 3.38 | ,1 | .1 | , / | ,4 | 1,0 | ,5 | .37 | ^{**} Attach official independent laboratory (must be NYSDOH ceritified) results for the months of March, June, September and December as required in Section XV, Part 2 of Permit #11. | F | Form C: Water Use Data for the Month of February 1993 for Sewer #1 | | | | | | | |------|--|-----------------------|--------------------|--|--|--|--| | Date | Wastewater Discharged (gal) | # of Production hours | Avg Flowrate (gph) | | | | | | 1 | 17,142 | 9 | 1,905 | | | | | | 2 | 19,978 | 9 | 2,220 | | | | | | 3 | 18,098 | 9 | 2,011 | | | | | | 4 | 13,986 | 8 | 1,748 | | | | | | 5 | 22,133 | 12 | 1,844 | | | | | | 6 | NO | PRODUCTION | | | | | | | 7 | NO NO | .
PRODUCTION | | | | | | | 8 | 19,524 | 9 | 2,169 | | | | | | 9 | 16,749 | 9 | 1,861 | | | | | | 10 | 18,549 | 9 | 2,061 | | | | | | 11 | 23,872 | 10 | 2,387 | | | | | | 12 | 16,318 | 9 | 1,813 | | | | | | 13 | NO | PRODUCTION | | | | | | | 14 | NO | PRODUCTION | | | | | | | 15 | NO | PRODUCTION | | | | | | | 16 | 20,626 | 9 | 2,292 | | | | | | 17 | 20,270 | 9 | 2,252 | | | | | | 18 | 22,755 | 10 | 2,276 | | | | | | 19 , | 14,091 | 8 | 1,761 | | | | | | 20 | NO | PRODUCTION | | | | | | | 21 | NO NO | PRODUCTION | | | | | | | 22 | 19,387 | 9 | 2,154 | | | | | | 23 | 17,498 | 9 | 1,944 | | | | | | 24 | 11,681 | 8 | 1,460 | | | | | | 25 | 18,572 | 9 | 2,064 | | | | | | 26 | 19,415 | 9 | 2,157 | | | | | | 27 | NO | PRODUCTION | | | | | | | 28 | NO | PRODUCTION | | | | | | | 29 | N/A | | | | | | | | 30 | N/A | | | | | | | | 31 | N/A | | | | | | | | Fo | Form D: Water Use Data for the Month of February 1993for Sewer #3 | | | | | | | |------|---|-----------------------|--------------------|--|--|--|--| | Date | Wastewater Discharged (gal) | # of Production hours | Avg Flowrate (gph) | | | | | | 1 | 1,620 | 1.5 | 1,080 | | | | | | 2 | 1,620 | 1.5 | 1,080 | | | | | | . 3 | 1,620 | 1.5 | 1,080 | | | | | | 4 | NO | PRODUCTION | | | | | | | 5 | NO | PRODUCTION | | | | | | | 6 | NO | PRODUCTION | | | | | | | 7 | NO | PRODUCTION | | | | | | | 8 | 1,620 | 1.5 | 1,080 | | | | | | 9 | 1,620 | 1.5 | 1,080 | | | | | | 10 | 1,620 | 1.5 | 1,080 | | | | | | 11. | NO | PRODUCTION | | | | | | | 12 | NO | PRODUCTION | | | | | | | 13 | NO | PRODUCTION | | | | | | | 14 | NO | PRODUCTION | | | | | | | 15 | NO | PRODUCTION | | | | | | | 16 | 1,350 | 1.5 | 900 | | | | | | 17 | 1,350 | 1.5 | 900 | | | | | | 18 | 1,350 | 1.5 | 900 | | | | | | 19 | NO | PRODUCTION | | | | | | | 20 | NO | PRODUCTION | - % | | | | | | 21 | NO : | PRODUCTION | , | | | | | | 22 | 1,620 | 1.5 | 1,080 | | | | | | 23 | 1,620 | 1.5 | 1,080 | | | | | | 24 | 1,620 | . 1.5 | 1,080 | | | | | | 25 | NO | PRODUCTION | | | | | | | 26 | NO | PRODUCTION | · | | | | | | 27 | NO | PRODUCTION | | | | | | | 28 | NO | PRODUCTION | | | | | | | 29 | N/A | | | | | | | | 30 | N/A | | | | | | | | 31 | N/A | | | | | | | | Form E: Waste Material Disposal Summary (attach manifests where appropriate) | | | | | | | |--|----------------------------------|----------|--------------------|----------------------------|--|--| | Date | Waste Material | Quantity | Hazardous
(Y/N) | USEPA/NY
Classification | Method of Disposal and
Carrier | | | 2/26/93 | Hazardous Waste
Solid,NA 9189 | 4 | Y | F006 | Recycler: J.B. Hunt
Special Commodities | | | | | | | | | | | | | <u> </u> | · | | | | | ^{**} Attach USEPA Toxic Chemical Release Inventory Reporting Form R in July SMR as required in Section XV, Part 6 of Permit #11. PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES Burseu of Waste Management P. G. Box 8550 Harrisburg, PA 17105-8550 OFFICIAL PENNSYLVANIA MANIFEST FORM FOR SHIPMENT OF ZARDOUS, INFECTION AND CHEMOTHERAPEUTIC WASTE. INFECTIO | | FORM HAZARDOUS 1. Generator's US EPA ID No. WASTE MANIFEST 1. Generator's US EPA ID No. G | ; of is not no but is n | equired by Federal law equired by State law. | | | | | | |-------------|--|--|--|--|--|--|--|--| | | 3. Generator's Name and Mailing Address | A State Manifest Doc | ument Number | | | | | | | | GENERAL SUPER PLATING CO., INC. 5606 JOY ROAD, EAST SYRACUSE, NY 13057 B. State Gen. ID | | | | | | | | | | 4. Generator's Phone (315) 446-2764 | C. State Trans. ID | NCO III. | | | | | | | | 5. Transporter 1 Company Name 6. US EPA ID Number J.B. HUNT SPECIAL COMMODITIES IN F. R. D 9 3 1 9 0 3 5 5 1 | РА- А Н | 0 4 0 0 | | | | | | | | 7. Transporter 2 Company Name 8. US EPA ID Number | D. Transporter's Phon E. State Trans. ID | , (800),363-8339 . | | | | | | | | 9. Designated Facility Name and Site Address 10. US EPA ID Number | PA- | 1777 77 1 17 | | | | | | | | URC PROCESSING COMPANY (Recytling Facility) | F. Transporter's Phon | () | | | | | | | | Jalnut Lane, RD\$5, Box 5553 Poctaville, Pa 17901 P A D 9 8 1 0 3 8 2 2 7 | G. State Facility's ID. H. Facility's Phone (* | 17, 622-4747 | | | | | | | | 12. Conta | | 14. I. Unit Waste No. | | | | | | | | 11. US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number) No. | Type Quantity | | | | | | | | | RQ BAZARDOUS WASTE, SOLID, N.O.S., ORM-E, MA9189 | | | | | | | | | | (7006) | 3 A 0 0 0 | 0 4 Y F O O 6 | | | | | | | 3 | b. | | | | | | | | | 4
2 | | | | | | | | | | 3 | c. | | | | | | | | | | | | · | | | | | | | | d. | J. Additional Descriptions for Materials Listed Above Lab Pack Physical State Lab Pack Physical State | K. Handling Codes for T23/T59/T5Q | Wastes Listed Above | | | | | | | | | Ila Drying | . | | | | | | | | | | | | | | | | | | b d 15. Special Handling Instructions and Additional Information | b. | d. | | | | | | | | TYS HANDLING CODE -R | | | | | | | | | | THERGENCY CONTACT #(315) 446-2264 | | | | | | | | | | | • | | | | | | | | | CHEM-TREC 24 HOUR EMERGENCY RESPUNSE 1-800-424-9300 | | areas shreeten name and are | | | | | | | | 16. GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accuration of the consignment are fully and accuration of the consignment are fully and according to a classified, packed, marked, and labeled and are in all respects in proper condition for transport by highway according to a | pplicable international and n | ry proper shipping frame and are liational government regulations. | | | | | | | | If I am a large quantity generator, I certify that I have a program in place to reduce the volume and toxicity of waste go practicable and that I have selected the practicable method of treatment, storage, or disposal currently available to me | enerated to the degree I have | ve determined to be economically and future threat to human health | | | | | | | | and the environment: QR, if I am a small quantity generator, I have made a good lattit effort to minimize my waste year, available to me and that I can afford. | eration and select the best w | | | | | | | | | Printed/Typed Name Rodney J. Campbell Signature Signature Little | respl | 0 2 2 5 9 3 | | | | | | | ř
F | 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Signature | 1.11 | MONTH DAY YEAR | | | | | | | A
N
S | VAN A 16/16/22 6/21/1/ | 11/12 | 1000 | | | | | | | O
P | 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Signature | · · · · · · · · · · · · · · · · · · · | MONTH DAY YEAR | | | | | | | Ē | 19. Discrepancy Indication Space T | | | | | | | | | F | 19. Discrepancy Indication Space E- Thould Kond - LAME | | . • | | | | | | | A
C
I | WT LISTED IN LAS FOR WRC RECORDS ACTUAL W | 5375 | LES. | | | | | | | LI | 20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest exceeding Printed/Typed Name Signature | ept as noted in Item 19. | MONTH DAY YEAR | | | | | | | T
Y | Joseph W. MACKEY South W. VI | a him | 102/27/93 | | | | | | | | | | | | | | | | | Form P. Equipmer Calibration Summary | | | | | | |--------------------------------------|------------------------|-------------------------------|---|--|--| | Instrument
#/Description | Date of
Calibration | Results
(Including Drift) | Signature and Title of
Representative | | | | CHROME | 2/1/93 | 7 = 6.8
4 - 10 = 3.9 - 9.8 | Rodney Campbell
Environmental
Coordinator | | | | N-1 | 2/1/93 |
7 = 6.7
4 - 10 = 3.6 - 9.7 | Rodney Campbell
Environmental
Coordinator | | | | N-2 | 2/1/93 | 7 = 6.8
4 - 10 = 3.8 - 9.7 | Rodney Campbell
Environmental
Coordinator | | | | FINAL | 2/1/93 | 7 = 6.9
4 - 10 = 3.9 - 9.8 | Rodney Campbell
Environmental
Coordinator | | | | | | | · | | | | | | | , | #### DEPARTMENT OF DRAINAGE AND SANITATION 650 HIAWATHA BOULEVARD, WEST SYRACUSE, NEW YORK 13204-1194 478-3755 - 425-2260 JOHN M. KARANIK Commissioner JOHN H. MULROY COUNTY EXECUTIVE ## ONONDAGA COUNTY INDUSTRIAL WASTEWATER DISCHARGE PERMIT | PERMIT NUMBER : 14 | DATE ISSUED | :December 16, 1987 | |---|---|--| | INDUSTRIAL CODE: 529 | _ EXPIRATION DAT | E: <u>December 16, 1990</u> | | sic : 3471 | _ | | | Pursuant to Article IV, Section
to the Use of the Public Sewer
Department of Drainage and Sanit | System issued by the | Regulations Relating
County of Onondaga | | General Super Pla
NA | ting Company (Joy Road
ME OF COMPANY | -Adhesives) | | is authorized by the Commission the industrial facility located | er to discharge indust
at | rial wastewater from | | 6608 Joy Road East | Syracuse, New York | 13057 | | ADDRESS OF COMPANY | FACILITY DISCHARGING WA | ASTEWATER | | to the <u>Metropolitan Syracuse Was</u>
NAME OF RECE | stewater Treatment Faci | lity | | in accordance with the following | conditions: | | #### I. PERMITTED WASTEWATER DISCHARGE The permittee is authorized to discharge the following to the county sewer system: - 1. Sanitary Wastewater - 2. Wastewater originating from dilute acid and Oaklite caustic cleaning line processes discharged at the Joy Road Adhesives plant (sewer #1). This wastewater must be pretreated to a pH between 5.5 and 9.5 standard units. #### II. PROHIBITED DISCHARGES The following shall not be introduced into the county system: - (a) Wastes which create a fire or explosion hazard in the wastewater treatment plant. - (b) Wastes which have a pH lower than 5.5 or higher than 9.5. - (c) Solid or viscous wastes in amounts which would cause an obstruction to the flow in sewers, or other interferences with the proper operation of the wastewater treatment plant. - (d) Wastes at a flow rate and/or pollutant discharge rate which is excessive over relatively short time periods creating a treatment process upset and subsequent loss of treatment efficiency. - (e) Wastes which are prohibited in Article III of the Rules and Regulations. #### III. EFFLUENT LIMITATIONS AND PRETREATMENT STANDARDS The discharge of wastewater having a pH lower than 5.5 or higher than 9.5 is prohibited. The local effluent limitations are detailed in Article III of the Onondaga County Rules and Regulations Relating to the Use of the Public Sewer System. This section of the permit may be modified at any time to contain specified parameters and numeric effluent limitations due to any change in requirements of Section 307 of Public Law 92-500 or any other local, state, or federal standards. A timetable will be established in the schedule of compliance section of this permit allowing reasonable time to comply with any modifications made to this permit. #### IV. NOTICE OF NON-COMPLIANCE In the event the permittee is unable to comply with any effluent limitation or pretreatment standard specified in this permit due to: - (1) Breakdown of industrial waste pretreatment equipment; - (2) Accident caused by human error or negligence, mechanical failure; or, - (3) Other causes, such as acts of nature; the permittee shall notify the operator of the receiving treatment plant immediately by telephone (478-3755 between the hours of 8:00 am-4:30 pm and 425-3142 or 478-4856 between the hours of 4:30 pm-8:00 am) so the necessary steps can be taken to prevent damage to the wastewater treatment process and equipment. In accordance with Article IV, Section 4.10, of the Rules and Regulations, the Commissioner shall be notified in writing within five (5) days and shall be informed of the following pertinent information: - (1) Cause of noncompliance; - (2) A description of the noncomplying discharge; - (3) Anticipated time the condition of noncompliance is expected to continue, or if such condition has been corrected, the duration of the period of noncompliance; - (4) Steps taken by the permittee to reduce and eliminate the noncomplying discharge; and, - (5) Steps to be taken by the permittee to prevent recurrence of the condition of noncompliance. Nothing in this permit shall be construed to relieve the permittee from the penalties for noncompliance with this permit pursuant to Article VII Enforcement and Penalties of the Rules and Regulations Relating to the Use of the Public Sewer System. #### V. CHANGE IN WASTEWATER DISCHARGE All discharges authorized herein shall comply with the terms and conditions of this permit. Any industrial facility expansions, production increases or process modifications which result in new, different or increased discharges of pollutants must be reported by submission of a new industrial waste disposal questionnaire pursuant to Article IV, Section 4.02, of the Rules and Regulations. This permit may be modified to specify and limit any pollutants not previously limited. The discharges of any pollutant more frequently than, or at a level in excess of that specified and authorized by this permit, shall constitute a violation of the terms and conditions of this permit. #### VI. COUNTY MONITORING The monitoring of each industrial discharge and the recording of quantitative values shall be performed by authorized employees or representatives of the county according to schedules established by the Commissioner. Composite samples will be collected whenever possible over the production day including clean-up periods. The flow (in gallons per day) shall be measured during each sampling period. If flow measurement is not practicable, water use records may be substituted in place of flow measurement. Additional sampling and flow measurement may be performed by the permittee using approved methods. The data obtained by the permittee may be used at the discretion of the Commissioner as supplemental data to show compliance with permit effluent limitations and pretreatment standards or to be used in addition to county data for computations of the Industrial Waste Surcharge. All analyses shall be performed in accordance with approved USEPA analytical methods (40 CFR 136) as stated in the latest edition of the following references: STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16th Edition, 1985, American Public Health Association, New York, New York 10019. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES, Environmental Monitoring and Support Laboratory, Office of Research and Development, March 1983, Environmental Protection Agency, Cincinnati, Ohio 45268. The sampling schedule cited below shall become effective the day this permit is issued. | DISCHARGE
LOCATION
Sewer #1 | <u>PARAMETERS</u>
Biochemical Oxygen | MINIMUM FREQUENCY OF ANALYSIS 12 times/year | TYPE OF
<u>SAMPLE</u>
Composite | |-----------------------------------|---|---|---------------------------------------| | Joy Rd. | Demand (BOD) | | | | Adhesives Pla
Effluent | nt Total Suspended
Solids (TSS) | 12 times/year | Composite | | , | Total Phosphorus (TP) | 12 times/year | Composite | | | Hq | 12 times/year | Composite | | • | Chromium (Cr) | 12 times/year | Composite | | | Copper (Cu) | 12 times/year | Composite | | | Oil & Grease | 12 times/year | Grab | #### VII. PERMIT MODIFICATIONS After sufficient notice to the permittee, this permit may be modified, suspended, or revoked in whole or part during its term for causes including, but not limited to, the following: - (a) Violation of any terms or conditions of this permit. - (b) A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge. - (c) A toxic effluent standard being established under any state or federal law for a toxic pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit. - (d) Failure to make payments of the Industrial Waste Surcharge. #### VIII. RIGHT OF ENTRY The permittee shall allow duly authorized employees or representatives of the county to enter the permittee's premises for the purpose of inspection, observation, flow measurement, sampling and testing in accordance with Article IV, Section 4.08, of the Rules and Regulations. #### IX. TRANSFER OF OWNERSHIP CONTROL In the event of any change in the ownership of the Industrial Facilities from which the authorized discharges emanate, the permittee shall notify the succeeding owner or controller of the existence of this permit by letter, a copy of which shall be forwarded to the Commissioner. #### X. PRETREATMENT FACILITIES The permittee shall provide and maintain, at its expense, pretreatment of industrial wastewaters when required by the Commissioner pursuant to Article IV, Section 4.09, of the Rules and Regulations. All reports, plans and/or specifications for new or modified pretreatment facilities or changes in method of operation must be approved by the Commissioner or his designee. #### XI. WASTE MATERIAL DISPOSAL Any screening, sludge, solids, waste oils, or other waste materials removed or separated from the permittee's authorized discharge shall be disposed of in such a manner as to prevent entry of such materials into navigable waters or into the wastewater treatment system. Upon the request of the Commissioner the following data shall be
reported to the County of Onondaga: - (a) The source of materials to be disposed of. - (b) The approximate volumes and weights. - (c) The method by which they were removed and transported. - (d) The company contracted to remove such materials. - (e) The final disposal or recovery location. #### XII. MONITORING FACILITIES If, in the opinion of the Commissioner, there are inadequate provisions for the collection of representative samples and accurate flow measurements, the Commissioner can require, in accordance with Article IV, Section 4.07, of the Rules and Regulations, that a monitoring facility consisting of a sampling manhole with a flow measuring device be installed by the permittee at its expense. This monitoring facility shall be approved by the Commissioner before installation. The permittee shall be responsible for all maintenance of the sampling manhole and calibration of the monitoring equipment. #### XIII. SCHEDULE OF COMPLIANCE The permittee shall comply with the following schedule: - (a) Beginning January 1, 1988, the permittee shall maintain a weekly log of water consumption to be submitted in the periodic report as outlined on page 8 of this permit. The log should include date, time, initial and final meter reading, total daily usage and initials of operator taking the readings. - (b) By February 1, 1988 the permittee shall install a continuous pH recording meter. - (c) By February 1, 1988 the permittee shall be in compliance with the county pH limits as stated on page 3 in the Effluent Limitations and Pretreatment Standards section of this permit. Failure to meet these dates may result in this office proceeding with the legal action necessary to ensure compliance including the assessment of fines and/or penalties prescribed in Article VII of the Onondaga County Rules and Regulations Relating to the Use of the Public Sewer System. #### XIV. COMPUTATION AND PAYMENTS OF INDUSTRIAL WASTE SURCHARGE The permittee shall pay its proportionate share of the cost of operation and maintenance and local debt retirement of the treatment system. These charges shall be computed by the Commissioner using the formulae in Article V, Section 5.02, of the Onondaga County Rules and Regulations. Payments shall be made to the County of Onondaga by the permittee no less often than annually. If there is a substantial change in the wastewater characteristics and/or flow rate introduced into the County Treatment Plant by the permittee, the industrial surcharge shall be adjusted accordingly. #### XV. PERMITTEE SELF-MONITORING AND REPORTING REQUIREMENTS The permittee shall submit a Self-Monitoring Report during the months of June and December of each year. Failure to submit a Self-Monitoring Report is a violation of this permit. The Self-Monitoring Report shall comply with and include the following: - 1. A summary of the average and maximum flow rates to be used in conjunction with the annual water usage data for the computation of the industrial waste surcharge. - 2. A summary of pH violations for sewer #1 as determined via a review of the continuous pH recording meter for the entire periodic report self-monitoring period. - 3. A summary of the results of quarterly equipment calibration checks for the pH metering/recording device for the regulated process wastestream. The June Self-Monitoring Report shall contain March and June equipment calibration checks. The December Self-Monitoring Report shall contain the September and December equipment calibration checks. - 4. A statement that compliance with all applicable standards is consistently achieved. If compliance is not consistently achieved, the report must include a statement as to what additional operation and maintenance and/or pretreatment equipment is necessary to achieve compliance. - 5. The report must be signed by an authorized representative of the permittee. #### XVI. RECORD KEEPING Records of all information resulting from self-monitoring activities shall be maintained for a minimum of three (3) years in accordance with 40 CFR 403.12(n). These records shall be available for inspection and copying by the Department of Drainage and Sanitation as the Control Authority. #### XVII. AUTHORIZATION AND AGREEMENT This permit and the authorization to discharge industrial wastewater into the public sewer system shall be legally binding upon the permittee. This permit shall expire three (3) years from the date of issuance. The permittee shall not discharge after the date of expiration. In order to receive a new permit and continued authorization to discharge wastewater to the public sewer system beyond the date of expiration, the permittee shall have paid all industrial waste surcharges owed to the County of Onondaga and submit an up-to-date industrial waste questionnaire and other information as required by the Commissioner no later than 120 days prior to the expiration date. | 12/31/87 | John Haran | |---------------------|-----------------| | DATE ' | SIGNATURE | | By the authority of | JOHN M. KARANIK | | | COMMISSIONER | I hereby agree to comply with the terms, conditions and requirements of this permit. | First Mychietts | 23 Dec 87 | |---|-----------| | SIGNATURE OF PERMITTEE OR AUTHORIZED REPRESENTATIVE | DATE | | HERBERT N. GERHARDT | PRES | | PRINTED NAME OF PERSON SIGNING | ጥፐጥፒድ | COUNTY OF ONONDAGA DEPARTMENT OF DRAINAGE AND SANITATION #### IN THE MATTER OF THE COMPLAINT #### AGAINST GENERAL SUPER PLATING CO., INC. STIPULATION Permittee, Arising out of alleged violations of the Onondaga County Rules and Regulations Relating to the Use of the Public Sewer System. WHEREAS, GENERAL SUPER PLATING CO., INC. has admitted to violating the Onondaga County Rules and Regulations Relating to the Use of the Public Sewer System; and WHEREAS, on or about and between the months of July 1987 to January 1988, GENERAL SUPER PLATING CO., INC. disposed of industrial waste in violation of the aforesaid Rules and Regulations; and WHEREAS, the ONONDAGA COUNTY DEPARTMENT OF URAINAGE AND SANITATION (the COUNTY) has by Local Law No. 3-1983 and more particularly by Sections 7.01 and 7.03 of the aforesaid Rules and Regulations, the authority to impose costs and civil penalties on the Permittee. NOW, THEREFORE, it is agreed: 1. 1 - 1. That GENERAL SUPER PLATING CO., INC. shall pay to the UNCHDAGA COUNTY DEPARTMENT OF DRAINAGE AND SANITATION the sum of Thirteen Thousand Three Hundred Thirty Dollars and 80/100 cents (\$13,330.90) as reimbursement for costs incurred by the COUNTY from November 20, 1987 to March 31, 1988 for daily sampling and analysis of Permittee's wastewater discharges. - 2. That commending April 1. 1988 and ending December 31. 1988, GENERAL SUPER PLATING CO., INC. will institute a self-monitoring program whereby on a biweekly basis Permitted Will sample its wastewater discharge on three consecutive days that are typical and representative of normal operating conditions. page the - 3. That commencing April 1, 1988 and ending July 31, 1988, all analysis of the biweekly samples will be performed by a laboratory certified by the New York State Department of Health. On or before August 14, 1988 the COUNTY must notify GENERAL SUPER PLATING CO., INC., in writing, whether future analysis of the samples must be performed by a certified laboratory or whether Fermittee can analyze said samples utilizing equipment owned and operated by Permittee. - 4. That sampling will be for all parameters required by the Industrial Waste Discharge Permits issued to GENERAL SUPER PLATING CO., INC. by the ONONDAGA COUNTY DEPARTMENT OF DRAINAGE AND SANITATION. Excluded from the list of parameters to be analyzed for is total toxic organics (TTO) which is defined in the permits. - 5. That commencing May 1, 1988 and ending December 31, 1988, GENERAL SUPER PLATING CO., INC. will transmit to the ONONDAGA COUNTY DEPARTMENT OF DRAINAGE AND SANITATION on a monthly basis written reports of the results of the self-monitoring activities described in paragraphs 2 through 4 above. - 6. That calibration of equipment used by GENERAL SUPEK PLATING CO., INC. for analyzing samples pursuant to this STIPULATION and it's Industrial Wastewater Discharge Fermits be done on a quarterly basis. - 7. That prior to January 1, 1989, the ONONDAGA COUNTY DEPARTMENT OF DRAINAGE AND SANITATION must notify GENERAL SUPER PLATING CO., INC., in writing of the self-monitoring and reporting procedures to be employed by Permittee during 1989. - 8. That GENERAL SUPER PLATING CO., INC. will develop an employee training program dealing with emergency response to spills, equipment malfunction or failure and uncontrolled discharges. Said program must be submitted to the ONONDAGA COUNTY DEPARTMENT OF DRAINAGE AND SANITATION by June 15, 1988 for approval by the Commissioner of Drainage and Sanitation. Approval of the proposed training program shall not be unreasonably withheld. Appropriate current and future employees will be trained as soon as practicable. Notification procedures implemented for accidental releases or pretreatment system failure must reflect the requirements contained in the Permittee's discharge permits with respect to immediate verbal notification followed by a written report to the UNONDAGA COUNTY DEPARTMENT OF DRAINAGE AND SANITATION. تاري - That nothing in this STIPULATION shall relieve GENERAL SUPER PLATING CO., INC. from its obligations pursuant to the Onondars County Rules and Regulations Relating to the Use of the Public Sewer System and all requirements contained in the Permittee's Industrial Wastewater Discharge Permits. - 10. That the provisions of this STIPULATION apply to wastewater discharges from GENERAL, SUPER PLATING CO., INC. facilities located at Celi Drive and Joy Road. - That payment of said sum and compliance with paragraphs 2 through 10 shall be in full and final satisfaction of any and all costs. Charges and penalties and/or expenses associated with the
aforementioned violations. Failure to comply with all provisions of this STIPULATION will subject GENERAL SUPER PLATING CO., INC. to further enforcement actions pursuant to the Onondaga County Rules and Regulations Relating to the Use of the Public Sever System. Sworn to before me this1988. Notary Formura vozo Notary Public, State of New York Qualified in Drone Co. No. 1844589 Sworn, to before me this day of May 19441819 _1988. Notary Publi JOHN M. KARANIK, Commissioner. Department of Drainage and Sanitation County of Onondaga GENERAL SUPER PLATING CO., INC. # COUNTY OF ONONDAGA <u>DEPARTMENT OF DRAINAGE AND SANITATION</u> In The Matter of the Complaint against STIPULATION GENERAL SUPERPLATING CO., INC Respondent WHEREAS, General Superplating Co., Inc. (Respondent) owner of the Celi Drive and Joy Road facilities, is charged with violating the Onondaga County Rules and Regulations Relating to the Use of the Public Sewer System (Rules and Regulations); WHEREAS, the Onondaga County Department of Drainage and Sanitation (the County) has by Local Law No. 3-1983 and, more particularly, by Section 7.01 and 7.03 of the aforesaid Rules and Regulations the authority to impose costs and civil penalties on the Respondent; and WHEREAS, Respondent desires to settle and compromise the alleged violations in order to avoid costly and protracted litigation and without admitting nor denying violations; and WHEREAS, General Superplating has challenged numerous of the alleged violations based on their interpretation of the Rules and Regulations, the permit terms, sampling methodologies and documentation; and WHEREAS, General Superplating has submitted a Wastewater Treatment Evaluation Report dated June, 1994 to the County; and WHEREAS, this Stipulation shall cover all violations occurring at Respondent's Joy Road and Celi Drive facilities that are known to the County during the period of 1988 to the date of execution of this agreement; NOW, THEREFORE, it is agreed: FIRST: The Respondent shall pay the sum of Forty-One Thousand Eight Hundred Dollars (\$41,800) to the County as a fine for alleged metal and pH violations. SECOND: The Respondent shall pay the sum of Three Thousand Eight Hundred Dollars (\$3,800) to the County as a fine for alleged self-monitoring deficiencies. THIRD: The Respondent shall pay the sum of Twelve Thousand Five Hundred Dollars (\$12,500) to the County as a fine for the alleged failure to notify the County of effluent limit violations pursuant to the terms of Respondent's Industrial Wastewater Discharge Permit. FOURTH: The Respondent shall pay the sum of Thirty-Three Thousand Dollars (\$33,000) to the County as a fine for the alleged unpermitted shielding line discharge. FIFTH: The Respondent shall pay the sum of Twenty-Two Thousand Eight Hundred and Sixteen Dollars (\$22,816) to the County as reimbursement for administrative costs. SIXTH: Of the aggregate sum of One Hundred Thirteen Thousand Nine Hundred and Sixteen Dollars (\$113,916), the amount of Sixty-Six Thousand Four Hundred and Ten Dollars (\$66,410) shall be suspended in consideration of the Respondent's expenditures to implement the wastewater program enhancements as required by this stipulation. The amount of Forty-Seven Thousand Five Hundred and Six (\$47,506) shall be paid according to the terms in the attached Schedule A. SEVENTH: The Respondent shall submit a draft plan to the County for approval no later that August 1, 1995 to establish operating capacities for the Lamella Gravity Settler using information from Lamella (Parkson Engineers) in conjunction with bench testing/settling tests results to determine the need for reducing solids loading/solids recirculating flow and/or installation of additional tankage for increased hydraulic detention time. The final approved plan must be submitted to the County no later than October 2, 1995. Said plan shall also evaluate the most current wastewater and solids management technologies for optimizing treatment processes such as alternative precipitants, and automated controls. EIGHTH: The Respondent shall submit a draft plan to the County for approval no later than August 1, 1995, which standardizes and makes current all of Respondent's general (inhouse) laboratory and documentation procedures. The final approved plan must be submitted to the County no later than October 2, 1995. NINTH: The Respondent shall submit a draft plan to the County for approval no later than September 1, 1995, which updates and makes current Respondent's Operation and Maintenance (O&M) Manual to include equipment, preventative maintenance check logs, and routine inventory of equipment conditions. The final approved plan must be submitted to the County by no later than November 1, 1995. TENTH: By no later that November 1, 1995 the Respondent shall have installed a flow proportioning/flow monitoring system at Sewer #2. Respondent shall provide a sampling location which allows ready access to Sewer #2 Effluent without the assistance of a GSP employee. Plans for said system must be submitted to the County no later than September 1, 1995 and must be approved by the County prior to installation. ELEVENTH: By no later than September 1, 1995 the Respondent shall provide documentation to the County for approval of plans for an enhanced operator training program which uses the updated O&M Manual as a resource. By December 1, 1995 the Respondent shall provide training by a third party, approved by the County, to Respondent's wastewater treatment operators. TWELFTH: By no later than August 1, 1995 the Respondent shall submit a draft to the County for approval of a "Slug Control Discharge Plan." Said approved plan shall be implemented by no later than September 1, 1995. THIRTEENTH: By no later than September 1, 1995 the Respondent shall submit to the County for approval a draft plan for a Pollution Prevention Program including a review of current and innovative technology for recovery/reuse, water reduction, and replacement chemistries. This plan will include a review of pollution prevention efforts from 1988 to present. Said approved plan shall be implemented no later than November 1, 1995. FOURTEENTH: By no later than October 2, 1995 the Respondent shall submit to the County for approval a draft Employee Training Program. Said program shall at a minimum, familiarize all employees with terms of the Respondent's Wastewater Discharge Permit, and the Slug Control Plan. FIFTEENTH: Failure by the Respondent to comply with any requirement of this Stipulation shall require it to pay upon demand of the County subject to Respondent's defenses and right of administrative and/or judicial review consistent with applicable laws, rules and regulations, stipulated penalties as follows for the period of one year from the date of execution of this stipulation by Respondent: | NATURE OF VIOLATION | STIPULATED PENALTY PER
VIOLATION | | |---|---|--| | PERMIT EXCEEDENCES FOR Heavy Metals | | | | One Magnitude over permit limits | \$300 | | | Two Magnitudes over permit limits | \$650 | | | Three Magnitudes over permit limits | \$1,000 | | | pH EXCEEDENCES | \$100 | | | UNPERMITTED DISCHARGES | \$100/Day | | | MISSED
COMPLIANCE/SUBMISSION
DEADLINE | \$25/Day | | | SMR DEFICIENCIES | \$100/DEFICIENCY Unless corrected within 15 days of receipt of Notice of Deficiency | | AUD BOL SIXTEENTH: That the terms and conditions of this Stipulation may be delayed or modified: 1) upon written consent of the County, upon good cause shown, which consent shall not be unreasonably denied; or 2) if the Respondent, its consultants, or agents cannot comply with the terms of this Stipulation because of an Act of God, war, strike, or other condition as to which conduct on the part of the Respondent, its consultants or agents was not the proximate cause; provided, however, that the Respondent notifies the County within 24 hours by telephone and within 5 days in writing when it obtains knowledge of any such condition and requests an appropriate extension or modification of the provisions hereof. SEVENTEENTH: That this Stipulation shall apply to, and be binding upon, the parties, their offices, agents, servants, employees, successors and assigns. EIGHTEENTH: That nothing in this Stipulation shall relieve Respondent from its obligations pursuant to the Onondaga County Rules and Regulation Relating to the Use of the Public Sewer System and all requirements contained in the Respondent's Industrial Wastewater Discharge Permit nor hinder the County from seeking penalties for violations not addressed in this stipulation. NINETEENTH: That payment of said sums and compliance with paragraphs FIRST through EIGHTEENTH shall be in full and final satisfaction of any and all costs, charges, penalties and/or expenses associated with any and all violations of the aforesaid Rules and Regulations by Respondent known to the County at the time of execution of this stipulation. DATED: 🌣 John M. Karanik, Commissioner Department of Drainage and noule W. Penaina Sánitation Sworn to before me this 19th day of Q_i 1995 Notary Public MERLE H. PIRAMO Notery Public of the State of N.Y. Qual. in On. Co. No. 4905968 My Commission Exp. Sept. 21, 19_5 DATED: 👊 lliàin Leui Corporate Officer General Superplating Co., Inc. Sworn to before me this 30 day of _199: γn . Notary Public DOREEN A. SIMMONS Notary Public, the St. of New York Qualified Onon. Co. No. 4698342 My Commission Exp. Mar. 30. 46.6 Schedule A ## Payment of Penalty | Date | Amount | | |------------------|-------------|--| | July 1, 1995 | \$11,876.50 | | | November 1, 1995 | \$11,876.50 | | | April 1, 1996 | \$11,876.50 | | | July 1, 1996 | \$11,876.50 | | Payment of fine should be made to: Onondaga County Department of Drainage and Sanitation 650 Hiawatha Boulevard, West Syracuse, New York 13204-1194
Attention: David J. Frachetti # Response of GSP to Joint Request for Information. # EXHIBIT 13A-1 # Summary of NOV/Exceedances 1988-1994 | • | | | |----------------------------|--|--------------------| | DATE OF INCIDENT | PARAMETER/ REPORTED EXCEEDENCE/ PERMIT LIMIT (As presented by OCDDS) | NOV/DATE
ISSUED | | 3/8/94 | Ni 5.6/4.1 (cont.; Upstate) | | | 12/15/93 | Ni 6.2/4.1 (County) | | | 10/30/93 | Total Metals 16.59/10.5 (County) Ni 8.84/4.1 (County) Total Metals 104.88/10.5 (County) Ni 59.0/4.1 (County) Cu 11.4/4.5 (County) Cr 34.2/7.0 (County) Ni 100/4.1 (GSP) Cu 12.5/4.5 (GSP) Cr 10.6/7.0 (GSP) Ni 9.6/4.1 (GSP) | NOV - 11/24/93 | | 10/27/93 | Ni 14.4/7.5 (grab; County)
Cu 12.6/7.5 (grab; County)
Cr 17.7/12.0 (grab; County) | NOV - 11/24/93 | | 10/18/93 | Ni 4.61/4.1 (County) | NOV - 11/24/93 | | 10/12/93 | Total Metals 13.74/10.5
Ni 4.42/4.1 (County)
Cr 7.38/7.0 (County) | NOV - 11/24/93 | | 10/7/93 | Total Metals 73.22/10.5
Cu 12.7/4.5 (County)
Ni 17.2/4.1 (County)
Cr 43/7.0 (County) | NOV - 11/24/93 | | 9/30/93 | Cr 7.79/7.0 (County) Total Metals 11.24/10.5 | NOV - 11/24/93 | | 9/27/93 | Cr. 13.8/12.0 (grab; GSP) Ni 9.01/7.5 (grab; County) Cu 15.2/7.5 (grab; County) Cr 38.6/12.0 (grab; County) | NOV - 11/24/93 | | 9/24 - 27/93
4 Day Ave. | Ni 5.36/2.6 (computation) | NOV - 11/24/93 | | 9/26-29/93
4 Day Ave. | Ni. 3.98/2.6 (computation) | NOV - 11/24/93 | | 9/25-28/93
4 Day Ave. | Ni 5.37/2.6 (computation)
Cu 9.82/2.7 | NOV - 11/24/93 | | 9/26/93 | Cu 33.5/4.5 (County)
Total Metals 49.21/10.5
Ni 13.2/4/1 (County) | | | 9/25/93 | Total Metals 11.93/10.5
Ni 6.36/4.1 (County) | | | DATE OF INCIDENT | PARAMETER/ REPORTED EXCEEDENCE/ PERMIT LIMIT (As presented by OCDDS) | NOV/DATE
ISSUED | |---------------------------|---|--------------------| | 9/23-26/93
4 Day Ave. | Ni 5.32/2.6 (computation) | | | 9/21/93 | Total Metals 15.7/10.5
Ni 7.99/4.1 (County) | | | . 9/8-11/93
4 Day Ave. | Ni 3.0/2.6 (computation) | | | -9/10/93 | Ni 15.2/7.5 (grab; County) | NOV - 11/24/93 | | 7/21/93 | Cr 15.7/12.0 (grab; County) | NON - 9/2/93 | | 3/18/93 | Ni 4.66/4.1 (comp.; GSP)
Ni 5.0/4.1 (comp.; GSP)
Ni 9.7/4.1 (comp.; GSP) | NON' - X | | 1/21/93 | Ni 4.65/4.1 (grab; County) | NON 4/28/93 | | 1/6/93 | Ni 9.13/4.1 (comp.; County) | NON 4/28/93 | | 10/21/92 | Total Metals 12.81/10.5 (computation) Ni 14/4.1 (comp.; GSP) | | | 9/10-11/92 | Ni 6.8/4.1 (comp.; Upstate) | · . | | 8/3/92 | Ni > 4.1/4.1 (GSP - NO SAMPLE) | · · | | 6/3/92 | Ni 45.2/(56.0)/4.1 (comp.; GSP) | | | 1/6/92 | Cu 5.70/4.5 (comp.; GSP) | | | 3/6/91 | Ni 6.00/4.1
Total Metals 10.61/10.5 | | | 3/11/91 | Ni 4.60/4.1 | | | 2/6/91 | Pb .80/.60 | | | 2/5/91 | Pb .80/.60 | | | 1/9/91 | Cu 6.50 (7.50)/4.5
Ni 4.80 (5.80)/4.1
Cr 11.70 (19.00)/7.0
Total Metals 23.04/10.5 | · | | 6/19/89 | Cr 14.76/7.0
Total Metals 16.04/10.5 | | | 10/18/89 | Ni 5.20/4.1
Ni 4.30/4.1 | · | | 10/3/89 | . Cu 4.71/4.5 | | | 5/4/89 | Ni 4.23/4.1 | • | | 3/3/89 | Ni 4.32/4.1 | | ¹Notice of Non-Compliance. | DATE OF INCIDENT | PARAMETER/
REPORTED EXCEEDENCE/ PERMIT LIMIT
(As presented by OCDDS) | NOV/DATE
ISSUED | |------------------|--|--------------------| | 10/5-6/88 | Cu 22:0/4.5
Ni 4.8/4.1
Total Metals 33.65/10.5 | | | 9/15/88 | Cr 8.52/7.0 | | | 8/1/88 | Cr 73.0/12.0 | | | 6/22-23/88 | Cu 9.6 (10.0)/4.5 | | | DATE | pH EXCURSIONS/
PERMIT LIMIT 5.9 -9.5 | |------------|---| | 4/27/94 | 9.6 (County; grab) | | 3/8-9/94 | > 9.5 (Upstate) | | 2/9/94 | 9.9 (County; grab) | | 12/20/93 | 4.7 (GSP) | | 11/18/93 | 9.6 (County; grab) | | . 11/10/93 | 9.8 (County; grab) | | 10/22/93 | 9.9 (Upstate; composite) | | 3/18/93 | 9.8 (County; grab) | | 1/21/93 | 9.8 (County; grab) | | 7/29/92 | 9.9 (County; grab) | | 6/10/92 | 9.7 (GSP; in site) | | 9/5/91 | 9.9 (OCDDS; composite) | | 1/9/91 | 10.9 (Upstate; comp.) | | 12/6/89 | 9.7 (Upstate; comp.) | | 12/5/88 | 9.8 (Upstate; comp.) | | 8/18/88 | 10.0 (Upstate; comp.) | | 8/17/88 | 9.8 (Upstate; comp.) | | 6/23/88 | 9.9 (Upstate; comp.) | Note: Actual NOVs and related correspondence available upon request.